Товарищество с ограниченной ответственностью «Хилти Казахстан»

СТАНДАРТ ОРГАНИЗАЦИИ

АНКЕРНЫЕ КРЕПЛЕНИЯ К БЕТОНУ С ПРИМЕНЕНИЕМ АНКЕРОВ HILTI. ПРАВИЛА РАСЧЕТА И ПРОЕКТИРОВАНИЯ

Приложение А (обязательное)

Нормированные параметры и коэффициенты для расчета анкеров

CTO 071040000966-001-2022

Предисловие

Расчетные характеристики и параметры анкеров, приведенные в стандарте, подтверждены на соответствие требованиям ETAG сведениями, представленными в Европейских технических свидетельствах (ETA), технических оценках на рассматриваемую продукцию:

- ETA-98/0001 Hilti stud anchor HST, HST-R, HST-HCR, HST3, HST3-R (Deutsches Institut fur Bautechnik 09.02.2018);
 - ETA-11/0374 Hilti stud anchor HSA (Deutsches Institut für Bautechnik 28.08.2017);
- ETA-02/0042 Hilti HSL-3, HSL-3-R (Centre Scientifique et Technique du Bâtiment 22.11.2017);
 - ETA-19/0556 Hilti HSL4 (Centre Scientifique et Technique du Bâtiment 20.01.2020);
- ETA-02/0032 Hilti push-in anchor HKD (Deutsches Institut für Bautechnik 07.01.2015);
- ETA-99/0009 Hilti HDA and HDA-R (Centre Scientifique et Technique du Bâtiment 06.01.2015):
- ETA-13/1038 Hilti screw anchor HUS3 (Deutsches Institut für Bautechnik 22.07.2019);
- ETA-20/0867 Hilti screw anchor HUS4 (Deutsches Institut für Bautechnik 14.07.2022);
- ETA-18/1160 Hilti bonded screw anchor HUS4 (Deutsches Institut für Bautechnik 14.07.2022);
 - ETA-16/0515 HVU2 (Deutsches Institut für Bautechnik 17.06.2019);
- ETA-11/0493 Injection system Hilti HIT-HY 200-A (Deutsches Institut fur Bautechnik 30.08.2019);
- \bullet ETA-03/0032 Hilti bonded anchor HVZ / HVZ R / HVZ HCR (Deutsches Institut fur Bautechnik 27.08.2015);
- ETA-12/0006 Hilti HIT-HY 200-A with HIT-Z / HIT-Z-R (Deutsches Institut fur Bautechnik 11.04.2019);
- ETA-20/0541 Injection system Hilti HIT-RE 500 V4 (Centre scientifique et technique du batiment 04.09.2021);
- ETA-19/0465 Hilti HIT-HY 170 with HAS-U (Deutsches Institut fur Bautechnik 28.08.2019);
- ETA-14/0457 Injection system Hilti HIT-HY 170 (Deutsches Institut für Bautechnik 14.12.2017);

Указатель разделов и страниц приложения

<u> міеханические анкеры с контролируемым моментом затяжки</u>	
Анкеры HST3	1
Анкеры HST-HCR.	6
Анкеры HSA	9
<u>Анкеры HSL-3</u>	12
<u> Анкеры HSL4</u>	16
Механические анкеры с контролем перемещения	
Анкеры НКД	20
Механические анкеры с уширением	
<u> Анкеры HDA</u>	24
Анкеры-шурупы	
<u>Анкеры HUS3</u>	27
<u> Анкеры HUS4</u>	31
<u>Капсульные анкеры</u>	
<u> Анкеры HUS-MAX + HUS4</u>	
<u> Анкеры HVU2 + HAS-U</u>	44
<u> Анкеры HVU2 + HIS</u>	49
<u> Анкеры HVU-TZ + HAS-TZ</u>	52
<u>Клеевые анкеры</u>	
<u> Анкеры HIT-HY 200-A + HIT-Z</u>	55
<u> Анкеры HIT-RE 500 V4</u> / <u>HIT-HY 170</u> / <u>HIT-HY 200-A + HAS-U</u>	59
Анкеры HIT-RE 500 V4 / <u>HIT-HY 170</u> / <u>HIT-HY 200-A + HIS</u>	66
<u> Анкеры HIT-RE 500 V4</u> / <u>HIT-HY 200-A + HZA</u>	72
Анкеры HIT-RE 500 V4 / HIT-HY 200-A + Арматура	77
Справочная информация	
Примеры расчета	84

Допускаемые при расчете условия установки: основание бетон C12/15-C50/60 с трещинами и без трещин; ударное сверление, алмазное сверление.

Таблица 1.1 – Конструктивные требования к размещению анкеров HST3

HCZ			H	ST3		
HST3	M8	M10	M12	M16	M20	M24
Эффективная глубина анкеровки h_{ef} (мм)	47	60	70	85	101	125
Минимальная толщина основания $h_{\min}(MM)$	100	120	140	160	200	250
1. Основание из бет	она С12/	15 с трег	цинами	•	•	•
1.1 Минимальное краевое расстояние $c_{\min}(\text{мм})$	55	70	85	90	-	-
для межосевого расстояния s (мм)	85	120	175	165	-	-
1.2 Минимальное межосевое расстояние $S_{min}(MM)$	40	55	80	90	-	-
для краевого расстояния c (мм)	55	75	95	165	-	-
2. Основание из бе	гона С12	2/15 без т	рещин			
2.1 Минимальное краевое расстояние $c_{\min}(\text{мм})$	70	80	100	110	-	-
для межосевого расстояния s (мм)	130	140	240	170	-	-
2.2 Минимальное межосевое расстояние $s_{min}(mm)$	60	70	110	90	-	-
для краевого расстояния c (мм)	90	100	140	145	-	-
3. Основание из бет	она С20/	25 с трег	цинами			
3.1 Минимальное краевое расстояние $c_{\min}(\text{мм})$	40	45	55	65	80	125
для межосевого расстояния s (мм)	50	80	110	150	180	240
3.2 Минимальное межосевое расстояние $s_{min}(MM)$	35	40	50	65	90	125
для краевого расстояния c (мм)	50	55	70	95	130	180
4. Основание из бе-	гона С20	<u>)/25 без т</u>	рещин			
4.1 Минимальное краевое расстояние $c_{\min}(\text{мм})$	40	50	55	65	80	170
для межосевого расстояния s (мм)	50	90	110	150	180	295
4.2 Минимальное межосевое расстояние $s_{min}(mm)$	35	40	60	65	90	125
для краевого расстояния c (мм)	50	60	70	95	130	255
HST3-R			HS	T3-R		
11313-K	M8	M10	M12	M16	M20	M24
Эффективная глубина анкеровки h_{ef} (мм)	47	60	70	85	101	125
Минимальная толщина основания $h_{\min}(MM)$	100	120	140	160	200	250
5. Основание из бет	она С20/	25 с тре г	цинами			
5.1 Минимальное краевое расстояние $c_{\min}(\text{мм})$	40	45	55	65	80	125
для межосевого расстояния s (мм)	50	80	110	150	180	140
5.2 Минимальное межосевое расстояние $s_{min}(mm)$	35	40	50	65	90	125
для краевого расстояния c (мм)	50	55	70	95	130	130

HST3-R			HS	ST3-R				
HST3-K	M8	M10	M12	M16	M20	M24		
6. Основание из бет	гона С20	/25 без т	рещин					
6.1 Минимальное краевое расстояние $c_{\min}(\text{мм})$	40	50	55	65	80	150		
для межосевого расстояния s (мм)	50	90	110	150	180	235		
6.2 Минимальное межосевое расстояние $s_{min}(mm)$	35	40	60	65	90	125		
для краевого расстояния c (мм)	50	60	70	95	130	205		
HST3/HST3-R			HST3	/ HST3-I	?			
11513/11513-K	M8	M10	M12	M16	M20	M24		
Эффективная глубина анкеровки h_{ef} (мм)	47	60	70	85	101	-		
Минимальная толщина основания $h_{\min}(MM)$	80	100	120	140	160	-		
7. Основание из бето	она C20/	25 с треп	цинами					
7.1 Минимальное краевое расстояние $c_{\min}(\text{мм})$	40	60	60	65	120	-		
для межосевого расстояния s (мм)	50	90	120	180	180	-		
7.2 Минимальное межосевое расстояние $s_{min}(MM)$	35	40	50	80	120	-		
для краевого расстояния c (мм)	50	100	90	130	180	-		
8. Основание из бет	гона С20	/25 без т	рещин					
8.1 Минимальное краевое расстояние $c_{\min}(\text{мм})$	40	60	60	65	120	-		
для межосевого расстояния s (мм)	60	90	120	180	180	-		
8.2 Минимальное межосевое расстояние $s_{min}(mm)$	35	40	50	80	120	-		
для краевого расстояния c (мм)	55	100	100	130	180	-		
HST3/HST3-R	HST3/HST3-R							
11313/11313-K	M8	M10	M12	M16	M20	M24		
Эффективная глубина анкеровки h_{ef} (мм)	-	40	50	65	•	-		
Минимальная толщина основания $h_{\min}(\text{мм})$	-	80	100	120	-	-		
9. Основание из бето	она С20/	25 с треп	цинами					
9.1 Минимальное краевое расстояние $c_{\min}(\text{мм})$	-	45	55	65	-	-		
для межосевого расстояния s (мм)	-	180	210	240	-	-		
9.2 Минимальное межосевое расстояние $s_{min}(mm)$	-	40	50	65	-	-		
для краевого расстояния c (мм)	-	90	105	130	-	-		
10. Основание из бетон	а класса	C20/25	без трещ	ИН				
10.1 Минимальное краевое расстояние $c_{\min}(\text{мм})$	-	50	60	65	-	-		
для межосевого расстояния s (мм)	-	190	215	240	-	-		
10.2 Минимальное межосевое расстояние	_	50	55	75	_	_		
$S_{\min}(MM)$								
для краевого расстояния c (мм)	-	95	110	140	-	-		

Таблица 1.2 – Параметры для расчета прочности при растяжении для анкеров HST3

нстэ	HST3/HST3-R											
HST3	M8	M8 M10 M		M12		16	M20	M24				
Эффективная глубина анкеровки h_{ef} (мм)	47	40	60	50	70	65	85	101	125			
1. P	азрушение по стали (п.6.1.1)											
1.1. Нормативное значение силы												
сопротивления анкера по стали $N_{n,s}$												
(кН):												
HST3	19,7	32	2,5	45	5,1	76	5,0	124,2	127,0			
HST3-R	17,7	28	3,7	42	2,5	69	9,4	115,8	156,0			
1.2. Коэффициент надежности γ_{Ns}			•		<u> </u>		•					
HST3	1,4							1,41				
HST3-R					1,4				1,56			

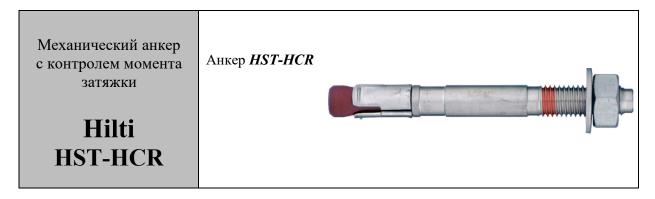
окончиние тиолицы 1.2				HS	T3/H	IST3-I	?		
HST3	M8	M	10	M			16	M20	M24
2. Разрушен	ие по ко	нтакт	у с осн	овани	ем (п.	6.1.2)			
2.1 Нормативное значение силы									
сопротивления анкера по контакту с									
основанием $N_{n,p}$ (кН)*									
в бетоне С20/25 без трещин	12	-	22	-	25	-	-	-	60
в бетоне С20/25 с трещинами	8	-	15	-	20	-	-	-	40
2.2 Коэффициент условий работы					1.0				
YNp					1,0)			
2.3 Коэффициент, учитывающий									
фактическую прочность бетона									
основания ψ_c :									
Бетон С12/15				0,65				-	
Бетон С16/20				0,83				-	
Бетон С20/25	1,0								
Бетон С25/30	1,1								
Бетон С30/37					1,22	2			
Бетон С35/45					1,34	4			
Бетон С40/50					1,4	1			
Бетон С45/55					1,48	8			
Бетон С50/60					1,5	5			
3. Разрушение от	выкалі	ывани	я бето	на осн	овани	я (п. 6.	1.3)		
3.1 Коэффициент условий работы умс					1,0)			
4. Разрушение	от рас	калыв	ания с	снова	ния (п	. 6.1.4)	1		
4.1 Критическое краевое расстояние									
при раскалывании $c_{cr,sp}$ (мм)									
Бетон С12/15	94		120	-	140	-	170	-	-
Бетон С20/25	70	85	90	90	105	105	130	190	190
4.2 Критическое межосевое									
расстояние при раскалывании $s_{cr,sp}$									
(MM)									
Бетон С12/15	188	-	240	-	280	-	340	-	-
Бетон С20/25	140	170	180	180	210	210	260	380	380
4.3 Коэффициент условий работы ү _{Nsp}	γ _{Nsp} 1,0								
*Для анкеров HST3 с неустановленно	ой вели	чиной	норма	гивной	силы	сопро	гивлені	ия $\overline{N_{n.p}}$ пр	оверку
прочности по контакту с основанием									

прочности по контакту с основанием допускается не выполнять – определяющими являются другие формы разрушения.

Таблица 1.3 – Параметры для расчета прочности при сдвиге для анкеров HST3

HST3				HS	ST3/E	HST3-I	?		
HS13	M8	M8 M10 M12		M16		M20	M24		
Эффективная глубина анкеровки $h_{\mathscr{C}}$ (мм)	47	40	60	50	70	65	85	101	125
1. Pa	азрушение по стали (п.6.2.1)								
1.1 Нормативное значение силы									
сопротивления анкера по стали без									
учета дополнительного момента $V_{n,s}$									
(кН):			_		_		_		
HST3									
Бетон С12/15	11,7	-	22,6	-	23,8	-	49,7	-	-
Бетон С20/25	13,8	21,9	23,6	34,0	35,4	54,5	55,3	83,9	94,0
HST3-R									
Бетон С12/15	10,5	-	17,0	-	24,6	-	42,6	-	-
Бетон С20/25	15,7	25,6	25,3	31,1	36,7	48,6	63,6	97,2	115,0

HST3				HS	T3/E	HST3-H	?		
HS13	M8	M	10	M12		M.	16	M20	M24
1.2 Нормативное значение									
предельного момента для анкера по									
стали $M^{0}_{n,s}$ (H·м)									
HST3	30	6	0	10)5	24	10	457	595
HST3-R	27 53 93 216 425								730
1.3. Коэффициент условий групповой работы анкеров λ_s	1,0								
1.4 Коэффициент надежности ууs									
HST3	1,25								
HST3-R					1,25				1,3
2. Разрушение от выка.	лывани	я бето	на осн	овани	я за аг	нкером	п.6.2	.2)	
2.1 Коэффициент учета глубины анкеровки <i>k</i>	2,62	2,	67	2,7	78	3,4	41	3,20	2,50
2.2 Коэффициент условий работы					1,0				
YVcp					1,0	,			
3. Разрушение от	г откал	ывани	я края	н осног	вания	(п. 6.2.	3)		
3.1 Приведенная глубина анкеровки	47	40	60	50	70	65	85	101	125
при сдвиге l_f (мм)	7/	70	00	50	70	0.5	0.5	101	143
3.2 Номинальный диаметр анкера	8	10 12 16 20	12 16 20	16		20	24		
d_{nom} (MM)	0	1	0	1	<i>_</i>	10		20	24
3.3 Коэффициент условий работы γ_{Vc}					1,0)			


Таблица 1.4 — **Параметры для расчета деформативности при растяжении для анкеров HST3**

нстэ				HS	ST3/E	IST3-I	R		
HST3	M8	M	10	M	12	M	16	M20	M24
Эффективная глубина анкеровки h_{ef} (мм)	47	40	60	50	70	65	85	101	125
1. Смещение анкеров от растя	гиваю	щих ус	илий	в бето	не С12	/15 бе з	з трещі	ин (п. 7.6)	
1.1. Контрольное значение силы на анкер в бетоне C12/15 без трещин, N_{cont} (кН)	4,3	-	5,8	-	9,0	-	14,4	-	-
1.2. Перемещения δ _{N0} (мм) HST3	0,3	-	0,1	-	0,1	ı	0,3	-	-
1.3. Перемещения δ _{N∞} (мм) HST3	0,6	-	0,3	-	0,3	-	0,5	-	-
2. Смещение анкеров от растя	ягивающих усилий в бетоне С12/15 с трещинами (п. 7.6)						<u>(</u>		
2.1 Контрольное значение силы на анкер в бетоне C12/15 с трещинами, N_{cont} (кH)	2,9	-	5,1	-	7,2	-	10,8	-	-
2.2. Перемещения δ _{N0} (мм) HST3	0,2	-	0,3	-	0,3	1	1,2	-	-
2.3. Перемещения δ _{N∞} (мм) HST3	0,4	-	0,5	-	0,6	-	2,1	-	-
3. Смещение анкеров от растягие	ающих	усили	ій в бе	тоне С	20/25-	C50/60) без т <u>р</u>	ещин (п.	7.6)
3.1. Контрольное значение силы на анкер в бетоне C20/25-C50/60 без трещин, N_{cont} (кН)	5,7	6,1	9,5	8,5	11,9	12,6	18,9	24,4	28,6
3.2. Перемещения δ _{N0} (мм) HST3	0,		0,3	0,7	0,2	-	,8	0,5	
HST3-R	0,	2	0,3	0,7	0,2	0	,8	0,5	0,8
3.3. Перемещения δ _{N∞} (мм) HST3 HST3-R	0, 0,		0,5 0,5	1,2 1,2	0,4 0,4		 ,5 ,5	0,9 0,9	1,4 1,7

HST3	HST3/HST3-R										
нз 13	M8	M8 M10		M12		M16		M20	M24		
4. Смещение анкеров от растягив:	ающих	усилиі	й в бет	оне С20/25-С50/60 с трещ				инами (п	. 7.6)		
4.1 Контрольное значение силы на анкер в бетоне C20/25-C50/60 с	3,6	4,3	5,7	6,1	9,5	9,0	13,4	17,4	19,0		
трещинами, N_{cont} (кН)											
4.2. Перемещения δ_{N0} (мм)						•		•			
HST3		0,6		0,4	0,8	0,6	1,8	1,3	2,2		
HST3-R		0,6		0,4	0,8	0,6	1,8	1,3	0,8		
4.3. Перемещения $\delta_{N\infty}$ (мм)			•				•				
HST3	1,1	1.	,3	1.	,6	1	,7	1,8	2,5		
HST3-R	1,1	1.	,3	1.	,6	1	,7	1,8	1,7		

Таблица 1.5 — **Параметры для расчета деформативности при сдвиге для анкеров HST3**

HOTO				HS	ST3/E	IST3-l	R		
HST3	M8	M	10	M	12	M	16	M20	M24
Эффективная глубина анкеровки h_{ef} (мм)	47	40	60	50	70	65	85	101	125
1. Смещение анкеров от сдвигающи	іх усилі	ий в бе	тоне (C12/15	с треп	цинамі	и и без	трещин (п. 7.7)
1.1. Контрольное значение силы на анкер в бетоне C12/15 с трещинами и без трещин, V_{cont} (кН)									
HST3	6,4	_	15.1	_	15,8	_	33,1	_	_
HST3-R	8,9	_	14,5	-	21,0	_	36,3	-	-
1.2. Перемещения δ _{V0} (мм)									
HST3	2,4	-	3,2	-	3,0	-	3,4	-	-
HST3-R	9,1	-	4,4	-	6,4	-	11,1	-	-
1.3. Перемещения $\delta_{V\infty}$ (мм)									
HST3	3,5	-	4,8	-	4,6	-	5,0	-	-
HST3-R	13,9	-	4,4	-	6,4	-	11,1	-	-
2. Смещение анкеров от сдвигающи	іх усилі			220/25-	·C50/6	0 с тре	щинам	и и без тј	рещин
	•	(п. 7.	7)						1
2.1. Контрольное значение силы на анкер в бетоне C20/25-C50/60 с									
трещинами и без трещин, V_{cont} (кН)									
HST3	7,9	12,5	13,5	19,4	20,2	31,1	31,6	47,9	45,0
HST3-R	8,9	14,6	14,5	17,8	21,0	27,8	36,3	55,6	57,0
2.2. Перемещения δ_{V0} (мм)									
HST3	2,8	4,2	2,5	3,1	3,8	4,4	4,3	2,7	2,0
HST3-R	7,1	3,7	2,3	3,9	3,3	3,5	5,7	3,2	2,5
2.3. Перемещения $\delta_{V\infty}$ (мм)									
HST3	4,2	6,3	3,7	4,7	5,6	6,6	6,4	4,1	3,0
HST3-R	10,7	5,6	3,4	5,8	4,9	5,3	8,5	4,8	3,7

Допускаемые при расчете условия установки: основание бетон C20/25-C50/60 с трещинами и без трещин; ударное сверление.

Таблица 2.1 – Конструктивные требования к размещению анкеров HST-HCR

HCT HCD		HST	-HCR	
HST-HCR	M8	M10	M12	M16
Эффективная глубина анкеровки hef (мм)	47	60	70	82
Минимальная толщина основания $h_{min}(mm)$	100	120	140	160
1. Основание из бе	етона С20/25 с	трещинами		
3.1 Минимальное краевое расстояние c_{\min} (мм)	45	50	55	60
для межосевого расстояния s (мм)	50	90	110	160
3.2 Минимальное межосевое расстояние <i>s</i> _{min} (мм)	40	55	60	70
для краевого расстояния c (мм)	50	70	75	100
2. Основание из б	бетона С20/25	без трещин		
4.1 Минимальное краевое расстояние c_{\min} (мм)	60	55	55	70
для межосевого расстояния s (мм)	60	115	145	160
4.2 Минимальное межосевое расстояние smin (мм)	60	55	60	70
для краевого расстояния c (мм)	50	70	80	110

Таблица 2.2 – Параметры для расчета прочности при растяжении для анкеров HST-HCR

HST-HCR		HST-	-HCR	
nsi-nck	M8	M10	M12	M16
Эффективная глубина анкеровки $h_{\it ef}$ (мм)	47	60	70	82
1. Разрушени	е по стали (п.	5.1.1)		
1.1. Нормативное значение силы сопротивления анкера по стали $N_{n,s}$ (кН):	19,4	32,3	45,7	84,5
1.2. Коэффициент надежности умs		1	,5	
2. Разрушение по конт	акту с основа	нием (п.6.1.2)		
2.1 Нормативное значение силы				
сопротивления анкера по контакту с основанием $N_{n,p}$ (кН):				
в бетоне С20/25 без трещин	9,0	16,0	20,0	35,0
в бетоне С20/25 с трещинами	5,0	9,0	12,0	25,0
2.2 Коэффициент условий работы умр		1	,0	

HCT HCD		HST-	HCR	
HST-HCR	M8	M10	M12	M16
2.3 Коэффициент, учитывающий фактическую				
прочность бетона основания ψ_c :				
Бетон С20/25		1,	,0	
Бетон С25/30		1	,1	
Бетон С30/37		1,	22	
Бетон С35/45		1,	34	
Бетон С40/50		1,	41	
Бетон С45/55		1,	48	
Бетон С50/60		1,	55	
3. Разрушение от выкалы	вания бетона о	снования (п.	6.1.3)	
3.1 Коэффициент условий работы үмс	1,2		1,0	
4. Разрушение от раска	лывания осно	вания (п. 6.1.	4)	
4.1 Критическое краевое расстояние при раскалывании <i>ccr.sp</i> (мм)		1,5	h ef	
4.2 Критическое межосевое расстояние при раскалывании <i>scr,sp</i> (мм)		3,0	h ef	
4.3 Коэффициент условий работы умар	1,2		1,0	

Таблица 2.3 – Параметры для расчета прочности при сдвиге для анкеров HST-HCR

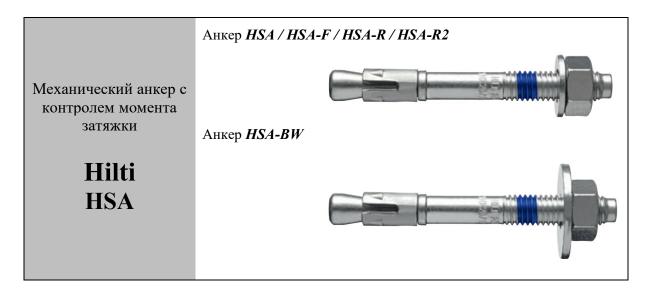

HST-HCR		HST-	-HCR	
пот-пск	M8	M10	M12	M16
Эффективная глубина анкеровки $h_{\mathscr{C}}(MM)$	47	60	70	82
1. Разрушени	е по стали (п.	6.2.1)		
1.1. Нормативное значение силы сопротивления анкера по стали без учёта дополнительного момента $V_{n,s}(kH)$:	13	20	30	55
1.2. Нормативное значение предельного момента для анкера по стали M_{θ} (Н·м)	30	60	105	266
1.3. Коэффициент условий групповой работы анкеров λ_s		1	,0	
1.4 Коэффициент надежности уvs		1,	25	
2. Разрушение от выкалывания	бетона основа	ания за анкер	ом (п.6.2.2)	
2.1 Коэффициент учета глубины анкеровки к	2,0	2,0	2,2	2,5
2.2 Коэффициент условий работы уср		1	,0	
3. Разрушение от откалы	зания края ос	нования (п. 6	.2.3)	
3.1 Приведенная глубина анкеровки при сдвиге l_f (мм)	47	60	70	82
3.2 Номинальный диаметр анкера <i>dnom</i> (мм)	8	10	12	16
3.3 Коэффициент условий работы ус		1	,0	

Таблица 2.4 - Параметры для расчета деформативности при растяжении для анкеров HST-HCR

HST-HCR		HST	-HCR	
HS1-HCK	M8	M10	M12	M16
Эффективная глубина анкеровки h_{ef} (мм)	47	60	70	82
1. Смещение анкеров от растягива	ющих усилий	в бетоне без т	рещин (п.7.6))
1.1. Контрольное значение силы на анкер в бетоне без трещин $N_{cont}(\kappa H)$	4,3	7,6	9,5	16,7
1.2. Перемещения δ_{N0} (мм)	0,1	0,1	0,1	0,1
1.3. Перемещения $\delta_{N\infty}$ (мм)	1,5	1,2	1,4	1,2
2. Смещение анкеров от растягиван	ощих усилий і	з бетоне с тре	щинами (п.7.0	6)
2.1. Контрольное значение силы на анкер в бетоне с трещинами N_{cont} (кН)	2,4	4,3	5,7	11,9
2.2. Перемещения δ_{N0} (мм)	0,6	0,2	0,8	1,0
2.3. Перемещения $\delta_{N\infty}$ (мм)	1,5	1,2	1,4	1,2

Таблица 2.5 – **Параметры для расчета деформативности при сдвиге для анкеров HST-HCR**

HST-HCR		HST	-HCR	
ns1-nck	M8	M10	M12	M16
Эффективная глубина анкеровки $h_{\mathscr{C}}(мм)$	47	60	70	82
1. Смещение анкеров от сдвигающих ус	илий в бетоне	с трещинами	и без трещин	(п.7.7)
1.1. Контрольное значение силы на анкер в бетоне без трещин $V_{cont}(\kappa H)$	7,4	11,0	17,0	27,5
1.2. Перемещения $\delta_{V\theta}$ (мм)	1,6	3,3	4,9	2,2
1.3. Перемещения $\delta_{V\infty}$ (мм)	2,4	4,9	7,4	3,3

Допускаемые при расчете условия установки: основание бетон C20/25-C50/60 без трещин; ударное сверление, алмазное сверление (M10-M20).

Таблица 3.1 – Конструктивные требования к размещению анкеров HSA

HSA				ŀ	ISA,	HS	A-F	F, H.	SA-l	BW,	HS	4-R	2, H	SA-	R			
пза		<i>M6</i>			<i>M8</i>		-	M10)	-	M12			M16	5	-	M20	
Эффективная глубина анкеровки h_{ef} (мм)	30	40	60	30	40	70	40	50	80	50	65	100	65	80	120	75	100	115
Минимальная толщина основания $h_{\min}(MM)$	10	00	120	100		120	100	120	160	100	140	180	140	160	180	160	22	20
1. Основания при																		
1.1 Минимальное краевое расстояние* $c_{\min}(MM)$		35		40	3	5	50	4	0	70	65	55	80	75	70	130	12	20
1.2 Минимальное межосевое расстояние* s_{min} (мм)		35			35			50			70			90		195	17	75
*Для стандартного моме	нта	затя	жки															

Таблица 3.2 – Параметры для расчета прочности при растяжении для анкеров HSA

HSA				I	HSA ₁	, HS	SA-F	<i>F, H</i> .	SA-I	BW,	HS	4-R2	2, H	SA-I	R			
пза		<i>M6</i>			<i>M8</i>		4	M10)		M12	?		M16	<u> </u>		M20)
Эффективная глубина анкеровки, h_{ef} (мм)	30	40	60	30	40	70	40	50	80	50	65	100	65	80	120	75	100	115
		1.]	Разр	уше	ние	по с	талі	и (п.	6.1.1)								
1.1. Нормативное значение																		
силы сопротивления анкера по																		
стали $N_{n,s}$ (кН):	9,0																	
HSA/HSA-BW:	, and the second				16,5			28,0			41,4			82,6			124	
HSA-F		9,5			15,9			27,0			40,4			80,1			-	
HSA-R2/HSA-R:	9,5 12,2				18,3			35,6			44,6			90,5			97,6	
1.2. Коэффициент надежности									1	,4								
YNs .									•	, .								
2. P	азру	ишен	ние і	по к	онта	кту	c oc	нова	ание	м (п	.6.1.	2)						
2.1 Нормативное значение																		
силы сопротивления анкера по																		
контакту с основанием в	6,0	7,5	9,0	-	-	16	-	-	25	-	-	35	-	-	50	-	-	-
бетоне $C20/25$ без трещин $N_{n,p}$																		
(кН)*:																		

IIC A				I.	ISA	, HS	SA-F	, H.	SA-I	BW,	HS	4-R	2, H	SA-	R			
HSA		<i>M6</i>			M8			M10)		M12	?		M16	5		M20)
2.2 Коэффициент условий									1	,0								
работы γ_{Np}									1	,0								
2.3 Коэффициент,																		
учитывающий фактическую																		
прочность бетона основания																		
$ \psi_c$:																		
Бетон С20/25									1	,0								
Бетон С25/30									1	,1								
Бетон С30/37									1,	22								
Бетон С35/45									1,	34								
Бетон С40/50									1,	41								
Бетон С45/55		1,48																
Бетон С50/60		1,48 1,55																
3. Разру	шені	ие о	т вы	кал	ыва	ния	бетс	на (осно	вані	ия (п	ı. 6.1	.3)					
3.1 Коэффициент условий										0								
работы γ_{Nc}									1,	,0								
4. Pa	зруш	пени	1е от	pac	калі	ыва	ния	осно	ван	ия (п. 6.	1.4)						
4.1 Критическое краевое																		
расстояние при раскалывании	50	60	65	65	90	100	95	105	145	100	125	155	115	140	190	130	185	200
$C_{cr,sp}(MM)$																		
4.2 Критическое межосевое																		
расстояние при раскалывании	100	120	130	130	180	200	190	210	290	200	250	310	230	280	380	260	370	400
$S_{cr,sp}(MM)$																		
4.3 Коэффициент			•		•			•	1	0	•		•	•				
надежности γ_{Nsp}									1	,0								
*Лля анкеров HSA с не	VCTAI	иов п	енис	ъй ве	тии	иной	i HOI	мат	ивис	ъй ст	ипы	сопт	оти	зпен	μα λ	<i>I</i>	Inore	nuv

^{*}Для анкеров HSA с неустановленной величиной нормативной силы сопротивления $N_{n,p}$ проверку прочности по контакту с основанием допускается не выполнять — определяющими являются другие формы разрушения.

Таблица 3.3 - Параметры для расчета прочности при сдвиге для анкеров HSA

HSA			1	HSA,	, HS	SA-F	F, H.	SA-l	BW,	HS	4-R	2, H	SA-I	R			
пза	N	16		<i>M8</i>			M10)	-	M12	,	Ì	M16		1	M20)
Эффективная глубина анкеровки, h_{ef} (мм)	30 4	0 60	30	40	70	40	50	80	50	65	100	65	80	120	75	100	115
	1	. Pa3	руше	ние	по с	талі	и (п.	6.2.1)								
1.1 Нормативное значение																	
силы сопротивления анкера по																	
стали без учета																	
дополнительного момента $V_{n,s}$																	
(кН):																	
HSA/HSA-BW:	6	6,5					18,9			29,5			51,0			85,8	
HSA-F	6	,5		10,6			18,9			29,5			51,0			-	
HSA-R2/HSA-R:	7	,2		12,3			22,6			29,3			56,5			91,9	
1.2 Нормативное значение																	
предельного момента для																	
анкера по стали $M^0_{n,s}$ (кН·м)																	
HSA/HSA-BW:	9	,9		21,7			48,6			91,7			216			454	
HSA-F	9		21,7			48,6			91,7			216			-		
HSA-R2/HSA-R:	9	,9		21,0			48,6			76,0			200			406	
1.3. Коэффициент условий групповой работы анкеров λ_s								1	,0								

HSA				H	ISA,	HS	'A-F	, HS	SA-l	ВW,	<i>HS</i> ₂	4-R	2, H.	SA-	R			
пза		<i>M6</i>			<i>M8</i>		Î	M10)	1	M12		Ì	M16		I	M20)
1.4 Коэффициент надежности									1.	25								
γ_{Vs}									,									
2. Разрушение	от і	вык	алы	вані	ия бе	етон	a oc	нова	ния	3a a	нке	ром	(п.6	.2.2))			
2.1 Коэффициент учета глубины анкеровки k	1	,0	2,0	1,0	1,5	2,0		2,4			2,0			2,9		2,0	3,	,5
2.2 Коэффициент условий	1,0																	
работы <i>ү_{Vср}</i>	1,0																	
3. Разр	ушеі	ние (OT O T	гкал	ыва	ния	кра	я ос	нов	ания	н (п.	6.2.3	3)					
3.1 Приведенная глубина анкеровки при сдвиге l_f (мм)	30	40	60	30	40	70	40	50	80	50	65	100	65	80	120	75	100	115
3.2 Номинальный диаметр анкера d_{nom} (мм)	6 8 10 12 16 20								20									
3.3 Коэффициент условий работы γ_{Vc}	6 8 10 12 16 20 1,0																	

Таблица 3.4 – **Параметры для расчета деформативности при растяжении для** анкеров **HSA**

HSA				H	ISA,	HS	A-F	, H.	SA-I	ВW,	HS	4-R	2, H	SA-	R			
IISA		<i>M6</i>			<i>M8</i>		,	M10		,	M12		1	M16	5		M20)
Эффективная глубина анкеровки, h_{ef} (мм)	30	40	60	30	40	70	40	50	80	50	65	100	65	80	120	75	100	115
1. Смещение анк	еров	от ј	раст	ягиі	ваюі	цих	уси.	лий	в бе	тоне	е без	тре	щин	(п.	7.6)			
1.1. Контрольное значение силы на анкер в бетоне $C20/25$ - $C50/60$ без трещин N_{cont} (кH)	2,9	3,6	4,3	4,0	6,1	7,6	6,1	8,5	11,9	8,5	12,6	16,7	12,6	17,2	23,8	16,6	25,1	30,8
1.2. Перемещения δ_{N0} (мм)	0,2	0,6	1,0	0,2	1,2	1,8	0,4	1,1	2,0	0,3	1,4	2,3	0,4	1,3	2,1	0,1	0,8	1,9
1.3. Перемещения $\delta_{N\infty}$ (мм)	0,6	1,0	1,4	0,6	1,6	2,2	0,8	1,5	2,4	0,7	1,8	2,7	0,8	1,7	2,5	0,5	1,2	2,3

Таблица 3.5 – Параметры для расчета деформативности при сдвиге для анкеров HSA

HSA				E	ISA,	HS	A-F	F, H.	SA-I	BW,	HS	4-R	2, H	SA-	R			
IISA		<i>M6</i>			<i>M8</i>			M10)		M12	?	ı	M16	5	-	M20)
Эффективная глубина анкеровки, h_{ef} (мм)	30	40	60	30	40	70	40	50	80	50	65	100	65	80	120	75	100	115
1. Смещение ан	кер	ов о	т сді	вига	ющі	их у	сили	ій в	бето	оне б	без т	рещ	ин (1	п. 7.	7)			
1.1. Контрольное значение силы на анкер в бетоне $C20/25$ - $C50/60$ без трещин V_{cont} (кН)		серов от сдв 3,7			6,1			10,8			16,7			29,1			49,0	
1.2. Перемещения δ_{V0} (мм)		1,6			1,9			2,0			2,1			2,2			2,3	
1.3. Перемещения $\delta_{V\infty}$ (мм)		2,4	•		2,9			3,0			3,2			3,3			3,5	

Допускаемые при расчете условия установки: основание бетон С20/25-С50/60 с трещинами и без трещин; ударное сверление, алмазное сверление

Таблица 4.1 – Конструктивные требования к размещению анкеров HSL-3

HGL 2			ŀ	I SL	-3-I	R/H	ISL-	-3-S	KR	/ H.	SL-	3-G	R					
HSL-3		<i>M8</i>		Ì	M10)	Ì	M12	?	1	M16	5	Ì	M20)	Î	M24	!
Эффективная глубина анкеровки <i>hef</i> (мм)	60	80	100	70	90	110	80	105	130	100	125	150	125	155	185	150	180	210
Минимальная толщина основания h_{min} (мм)	120	170	190	140	195	215	160	225	250	200	275	300	250	380	410	300	405	435
1. Осно	ование из бо 70			етон	a C	20/2	25 бе	3 TJ	ещ	ин								
1.1 Минимальное краевое расстояние c_{min} (мм)	70 140				120			80			100			150			-	
для межосевого расстояния s (мм)		140			160			240			240			300			-	
1.2 Минимальное межосевое расстояние s_{min} (мм)		70			70			80			100			125			-	
для краевого расстояния $c \ge (\text{мм})$		100			100			170			240			300			-	
3. Осно	вані	ие и	з бе	гона	C2	0/25	5 с т	реп	цина	ни								
3.1 Минимальное краевое расстояние c_{min} (мм)		70			80			80			100			150			-	
для межосевого расстояния s (мм)		140			160			240			240			300			-	
3.2 Минимальное межосевое расстояние s_{min} (мм)		70			70			80			100			125			-	
для краевого расстояния $c \ge (\text{мм})$		100			100			160			240			300			-	

Таблица 4.2 – Параметры для расчета прочности при растяжении для анкеров HSL-3

HGL 2					HS	L-3	-R /	HS	<i>L-3</i>	-SK	R/	HSI	L-3-	GR				
HSL-3		<i>M</i> 8	•		M10)		M12	2	Ì	M10	5	1	M2(9	Ì	M2-	4
Эффективная глубина анкеровки hef (мм)	60	80	100	70	90	110	80	105	130	100	125	150	125	155	185	150	180	210
	l. Pa	зру	шен	ие і	10 C	гали	і (п.	6.1.	1)				l					1
1.1. Нормативное значение силы																		
сопротивления анкера по стали																		
$N_{n,s}$ (кH):																		
HSL-3-R, HSL-3-GR, HSL-3-SKR		25,6			40,6			59,0			109,9)		171,5	5		-	
1.2. Коэффициент надежности умs																		
HSL-3-R, HSL-3-SKR		1,5							1,	87							_	
HSL-3-GR				ı				1,5									_	
2. Разруш	ени	е по	ког	нтаі	кту (c oci	нова	анис	ем (1	п.6.1	.2)							
2.1 Нормативное значение силы																		
сопротивления анкера по контакту с																		
основанием в бетоне С20/25 с																		
трещинами $N_{n,p}$ (кН)*:																		
HSL-3-R, HSL-3-GR, HSL-3-SKR	12	12	12	16	16	16	-	24	24	-	36	36	-	50	50	-	-	-
2.2 Нормативное значение силы				•									•					
сопротивления анкера по контакту с																		
основанием в бетоне С20/25 без																		
трещин $N_{n,p}$ (кН)*:																		
HSL-3-R, HSL-3-GR, HSL-3-SKR	20	20	20	-	-	-	-	50	50	-	65	65	-	95	95	-	-	-
2.3 Коэффициент условий																		
работы γ_{Np}																		
HSL-3-R, HSL-3-GR,								1.0										
HSL-3-SKR								1,0										
2.4 Коэффициент, учитывающий																		
фактическую прочность бетона																		
основания ψ_c :																		
Бетон С20/25									1,									
Бетон С25/30									1,	,1								
Бетон С30/37																		
Бетон С35/45									1,									
Бетон С40/50									1,									
Бетон С45/55									1,									
Бетон С50/60						<u> </u>			1,:			1 2						
3. Разрушение	OT I	зык	алы	ван	ия (оето	на (осно	ван	ия (п. 6	.1.3) 				_	1
3.1 Эффективная глубина	60	80	100	70	90	110	80	105	130	100	125	150	125	155	185	150	180	210
анкеровки <i>h_{ef}</i> (мм)		<u> </u>	1	<u> </u>]						1	<u> </u>	1			Щ	1
3.2 Коэффициент условий									см.п	.2.2.								
работы <i>ү_{Nc}</i>																		

IICI 2					HS	L-3	-R /	HS	<i>L-3</i>	-SK	R/L	HSI	L-3-	GR				
HSL-3		<i>M8</i>		Î	M10)	1	M12	2	1	M16	6	Ì	M20)	Î	M24	1
Эффективная глубина анкеровки h_{ef} (мм)	60	80	100	70	90	110	80	105	130	100	125	150	125	155	185	150	180	210
4. Разруше	ние	от р	аск	алы	ван	ия (осно	ван	ия ((п. 6	.1.4)						
4.1 Критическое краевое расстояние	115	160	200	135	180	275	150	210	260	190	285	340	240	355	425	285	450	525
при раскалывании $c_{cr,sp}$ (мм)	110	100	200	133	100	273	150	210	200	170	200	3.10	210	333	123	203	150	323
4.2 Критическое межосевое																		
расстояние при раскалывании	230	320	400	270	360	550	300	420	520	380	570	680	480	710	850	570	900	1050
$S_{Cr,Sp}(MM)$																		
4.3 Коэффициент условий									см.г	. 2 3								
работы γ_{Nsp}									CM.I	1.4.3								

^{*} для анкеров HSL в бетоне без трещин и анкеров HSL в бетоне с трещинами с неустановленной величиной нормативного значения силы сопротивления проверку прочности по контакту с основанием допускается не выполнять — определяющими являются другие формы разрушения.

Таблица 4.3 – Параметры для расчета прочности при сдвиге для анкеров HSL-3

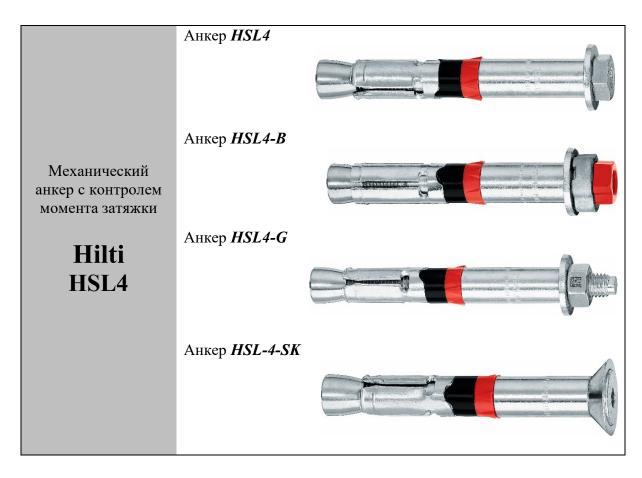

1101 2					HS	L-3-	-R /	HS	L-3	-SK	R/	HS	L-3-	GR				
HSL-3		<u>M8</u>	1	Ì	M10)	1	M12	2	Ì	M10	6	Ì	M20)	Λ	M24	!
Эффективная глубина анкеровки h_{ef} (мм)	60	80	100	70	90	110	80	105	130	100	125	150	125	155	185	150	180	210
1.	Pag	вруг	пені	ие п	о ст	али	(п.	6.2.1	l)									
1.1 Нормативное значение силы																		
сопротивления анкера по стали без																		
учета дополнительного момента																		
$V_{n,s}$ (кH):																		
HSL-3-R, HSL-3-SKR		50,9			63,9			82,8			127,7	7		154,8	;		-	
HSL-3-GR		40,3			58,9			78,7			129,5	5		151,9	•		-	
1.2 Нормативное значение																		
предельного момента для анкера по		30			60			105			266			519			898	
стали $M^0_{n,s}$ (H·м)																		
1.3. Коэффициент условий групповой									1.	0								
работы анкеров λ_s									1,	,0								
1.4. Коэффициент надежности γ_{Vs}																		
HSL-3-R, HSL-3-SKR		1,25							1,	56							-	
HSL-3-GR								1,25									-	
2. Разрушение от вы	калі	ыва	ния	бет	она	осн	ова	ния	1 3a :	анк	epoi	м (п	.6.2.	2)				
2.1 Коэффициент учета глубины	1,8									2,0								
анкеровки <i>k</i>	1,0									2,0								
2.2 Коэффициент условий работы ууср									1	,0								
3. Разрушение	е от	отк	алы	ван	ия	края	н ос	нов	ани	я (п	6.2	2.3)						
3.1 Приведенная глубина анкеровки	60	80		70	90	110							125	155	105	150	100	210
при сдвиге l_f (мм)	00	80	100	/0	90	110	80	103	130	100	123	130	123	133	103	130	100	210
3.2 Номинальный диаметр анкера d_{nom}		12			15			18			24			28			32	
(MM)		12			13			18			<i>2</i> 4			28			32	
3.3 Коэффициент условий работы уус									1.	,0								

Таблица 4.4 – Параметры для расчета деформативности при растяжении для анкеров HSL-3

HSL-3	HS	SL-3-R/HS	SL-3-SKR	HSL-3-SH	H / HSL-3-(GR
nst-s	M8	M10	M12	M16	M20	M24
1. Смещение анкеров от	растягиван	ощих усил	ий в бетоне	без трещи	н (п. 7.6)	
1.1. Контрольное значение силы на анкер в бетоне без трещин N_{cont} (кН)	9,5	13,3	17,1	23,8	33,3	-
1.2. Перемещения бло (мм)	0,15	0,48	0,41	0,22	0,33	-
1.3. Перемещения б№ (мм)	0,51	0,51	0,51	0,51	0,51	-
2. Смещение анкеров от р	астягиваю	щих усили	й в бетоне	с трещина	ми (п. 7.6)	
2.1 Контрольное значение силы на анкер в бетоне с трещинами <i>Ncont</i> (кН)	5,7	7,6	11,4	17,1	23,8	-
2.2. Перемещения бло (мм)	1,17	0,75	2,42	6,37	2,99	-
2.3. Перемещения б№ (мм)	1,35	0,94	1,66	1,33	1,27	-

Таблица 4.5 — **Параметры для расчета деформативности при сдвиге для** анкеров HSL-3

HSL-3		HSL-3-	R/HSL-3-	GR / HSL-	3-SKR	
nst-s	M8	M10	M12	M16	M20	M24
1. Смещение анкеров от сдвига	ющих уси.	лий в бетон	е с трещин	ами и без т	рещин (п.	7.7)
1.1. Контрольное значение силы на анкер в бетоне C20/25-C50/60 <i>V</i> _{cont} (кH)	19,2	28,0	45,0	74,0	72,3	-
 Перемещения δ<i>v</i>₀ (мм) 	12,26	8,13	7,47	41,11	12,44	-
 Перемещения бу∞ (мм) 	18,4	12,2	11,2	61,7	18,7	-

Допускаемые при расчете условия установки: основание из бетона классов C20/25-C50/60 с трещинами и без трещин; ударное сверление, алмазное сверление (для анкеров HSL4, HSL4-G – M8-M24; для анкера HSL4-B – M12-M24; для анкера HSL4-SK – M8-M12).

Таблица 5.1 – Конструктивные требования к размещению анкеров HSL4

HCI 4			I	I SL	4/1	HSI	_4-E	3 / F	I SL	4-S	K/I	HSI	4-0	j				
HSL4		<i>M8</i>	1	Ì	M10)	Ì	M12	?	Î	M16	5	Ì	M20)	1	M24	1
Эффективная глубина анкеровки h_{ef} (мм)	60	80	100	70	90	110	80	105	130	100	125	150	125	155	185	150	180	210
Минимальная толщина основания h_{min} (мм)	120	170	190	140	195	215	160	225	250	200	275	300	250	380	410	300	405	435
1. Основ	ание	е из	бетс	она	C20	/25	без :	греі	цин	[
1.1 Минимальное краевое расстояние c_{min} (мм)		60			70			80			100			150			150	
для межосевого расстояния $s \ge (\text{мм})$		100			160			240			240			300			300	
1.2 Минимальное межосевое расстояние s_{min} (мм)		60			70			80			100			125			150	
для краевого расстояния $c \ge (\text{мм})$		100			100			160			240			300			300	
2. Осно	вані	ие и	з бе	тона	a C2	0/25	5 с т	реп	цина	ами								
2.1 Минимальное краевое расстояние c_{min} (мм)		60			70			70			100			120			120	
для межосевого расстояния s (мм)		80			120			160			200			220			280	
2.2 Минимальное межосевое расстояние s_{min} (мм)		50			70			70			80			120			120	
для краевого расстояния $c \ge (\text{мм})$		80			100			140			180			220			260	
* - Анкеры HSL4-SK допускается устанавланкеровки)	иват	ь тол	пько	в 1-с	oe yo	танс	воч	ное і	толо	жені	ие (н	аим	ны	іая г.	пуби	на		

Таблица 5.2 – Параметры для расчета прочности при растяжении для анкеров HSL4

HSL4				H	SL4	1 / F	I SL	4-E	3 / F	HSL	.4-S	SK/	'HS	SL4	- <i>G</i>			
HSL4		<u>M8</u>		1	M10)		M12	2	1	И10	5	Î	M20)	Ī	M24	1
Эффективная глубина анкеровки h_{ef}	60	80	100	70	90	110	90	105	130	100	125	150	125	155	105	150	100	210
(MM)	60	80	100	70	90	110	80	103	130	100	123	150	123	133	183	130	180	210
	1	1. Pa	азру	шен	ие	по с	тал	И										
1.1. Нормативное значение силы																		
сопротивления анкера по стали		29,3			46,4			67,4			125,6	5		196,0)		282,4	ļ
$N_{n,s}$ (кH):																		
1.2. Коэффициент надежности умs									1	,5								
2. Pas	руп	іені	1е по	о ко	нта	кту	c oc	нов	ани	ем								
2.1. Нормативное значение силы						•												
сопротивления анкера по контакту с																		
основанием* $N_{n,p}$ (к \hat{H})																	1	
в бетоне С20/25 без трещин	-	-	-	-	-	-	-	-	-	-	65	65	-	95	95	-		100
в бетоне C20/25 с трещинами	12	12	12	16	16	16	-	24	24	-	36	36	-	50	50	-	65	65
2.2 Коэффициент условий									1	.0								
работы γ_{Np}										, -								
2.3 Коэффициент, учитывающий																		
фактическую прочность бетона																		
основания ψ_c :																		
Бетон С20/25									1	_								
Бетон С25/30									1	_								
Бетон С30/37									1,	22								
Бетон С35/45									1,	34								
Бетон С40/50									1,	41								
Бетон С45/55									1,	48								
Бетон С50/60									1,									
3. Разруш	ение	2 от	вын	саль	ıba	ния	бет	она	осн	ован	ния							
3.1 Коэффициент условий									1.	0								
работы γ_{Nc}																		
4. Разр	уше	ение	OT	рась	салі	ыва	ния	осн	ова	ния								
4.1 Критическое краевое расстояние			200								205	240	240	255	125	205	450	525
при раскалывании $c_{cr,sp}$ (мм)	113	100	200	133	180	2/3	130	210	200	190	283	340	240	333	423	283	430	323
4.2 Критическое межосевое																		
расстояние при раскалывании	230	320	400	270	360	550	300	420	520	380	570	680	480	710	850	570	900	1050
$S_{cr,sp}(MM)$		L											L					
4.3 Коэффициент условий										0								
работы γ_{Nsp}									1	,υ								
* для анкеров HSL4 с неустановленно	й ве	лич	иноі	й но	ома	ГИВН	ого	сил	ысс	про	тив.	пени	ия N_i	_{п,р} П‡	ове	рку		
прочности по контакту с основанием ,																	фор	мы
разрушения	•														_ •		•	

Таблица 5.3 – Параметры для расчета прочности при сдвиге для анкеров HSL4

таолица 3.3 – парамстры для	pac	. 101		_												<u> </u>		
HSL4				H	SL4	/ h	ISL	4-B	3 / F	HSL.	4- 2	SK /	HS	<i>L4</i>	-G			
HSL7		<i>M</i> 8	1		M10)	Ī	M12	?	N.	110	5	1	M20)	M	24	!
Эффективная глубина анкеровки h_{ef}	60	80	100	70	00	110	90	105	120	100 1	25	150	125	155	105	150 1	90	210
(MM)	00	80	100	70	90	110	80	103	130	100	123	130	123	133	103	130 1	80	210
	1	. Pa	зру	шен	ние г	10 CT	галі	1										
1.1 Нормативное значение силы																		
сопротивления анкера по стали без																		
учета дополнительного момента																		
$V_{n,s}$ (кH):																		
HSL-4, HSL-4-B		31,1			60,5			89,6		1:	58,5	5	1	186,0)	20)4,5	
HSL-4-G		26,1			41,8			59,3		1.	20,6	5		155,3	3	20)4,5	
HSL-4-SK		14,6			23,2			33,7		6	2,8			98,0		1.4	16,5	
(по шпильке без гильзы)		14,0			23,2			33,1		,	12,0			90,0		14	10,5	
1.2 Нормативное значение																		
предельного момента для анкера по		30			60			105		2	266			519		8	98	
стали $M^0_{n,s}$ (H·м)																		
1.3. Коэффициент условий групповой									1	.0								
работы анкеров λ_s									1	,0								
1.4. Коэффициент надежности γ_{Vs}									1,	25								
2. Разрушение от	гвы	кал	ыв	ани	я бе	гона	a oc	нова	ания	я за а	нк	еро	M					
2.1 Коэффициент учета глубины		2,4			2,6			2,7			2,8			3,8		2	,2	
анкеровки <i>k</i>		2,4			2,0			2,7			2,0			3,0		3	,,,	
2.2 Коэффициент условий работы ууср									1	,0								
3. Разруш	ени	е от	OTI	сал	ыва	ния	кра	я ос	снов	зания	I							
3.1 Приведенная глубина анкеровки									1 _	h								
при сдвиге l_f (мм)									ı _f –	h_{ef}								
3.2. Номинальный диаметр анкера		12			15			18			24			28			32	
d_{nom} (MM)		12			13			10			∠4			20)	
3.3 Коэффициент условий работы γ_{Vc}									1	,0								

Таблица 5.4 – Параметры для расчета деформативности при растяжении для анкеров HSL4

HSL4		HSL4/	HSL4-B / F	HSL4-SK/	HSL4-G	
HSL4	M8	M10	M12	M16	M20	M24
1. Смещение анкеров от	растягиван	ощих усил	ий в бетоне	е без трещи	Н	
1.1. Контрольное значение силы на анкер в бетоне без трещин N_{cont} (кН)	9,3	11,7	14,3	20,0	27,9	36,7
1.2. Перемещения бло (мм)	0,1	0,1	0,2	0,3	0,4	0,5
1.3. Перемещения б№ (мм)	0,2	0,2	0,2	0,4	0,4	0,6
2. Смещение анкеров от р	астягиваю	щих усили	й в бетоне	с трещина	ми	
2.1 Контрольное значение силы на анкер в бетоне с трещинами <i>Ncont</i> (кН)	3,6	6,4	10,2	14,3	20,0	26,2
2.2. Перемещения бло (мм)	0,5	0,5	0,6	0,6	0,7	0,8
2.3. Перемещения б№ (мм)	1,1	1,1	1,1	1,1	1,1	1,1

Таблица 5.5 — Параметры для расчета деформативности при сдвиге для анкеров HSL4

HSL4		HSL-4/H	ISL-4-B / F	HSL-4-SK /	HSL-4-G	
HSL4	M8	M10	M12	M16	M20	M24
1. Смещение анкеров от сдвига	ющих уси.	лий в бетон	не с трещин	ами и без т	грещин	
Анкеры HSL4, HSL4-B, HSL4-SK						
1.1. Контрольное значение силы на анкер в бетоне C20/25-C50/60 <i>V</i> _{cont} (кH)	17,8	34,6	51,2	90,6	106,3	116,9
 Перемещения δ<i>v</i>₀ (мм) 	3,8	5,2	6,3	8,5	7,3	9,5
 Перемещения бу∞ (мм) 	5,7	7,8	9,4	12,7	11,0	14,3
Анкеры HSL4-G						
2.1. Контрольное значение силы на анкер в бетоне C20/25-C50/60 <i>V</i> _{cont} (кH)	8,6	23,9	33,9	68,9	88,7	116,9
2.2. Перемещения δν ₀ (мм)	3,7	5,0	6,0	7,9	7,8	9,5
2.3. Перемещения бу∞ (мм)	5,6	7,4	9,0	11,9	11,8	14,3

Допускаемые при расчете условия установки: основание бетон С20/25-С50/60 без трещин; ударное сверление.

Таблица 6.1 – Конструктивные требования к размещению анкеров НКО

HVD		HK	XD-S/H	KD-SR	HKD-E	/HKD-	ER	
HKD	M6X30	M8X30	M10X30	M8X40	M10X40	M12X50	M16X65	M20X80
Эффективная глубина анкеровки h_{ef} (мм)	30	30	30	40	40	50	65	80
Минимальная толщина основания h_{min} (мм)	100	100	100	100	100	100	130	160
	1. Oc	нование	без треп	цин				
1.1 Минимальное краевое расстояние c_{min} (мм)	105	105	105	140	140	175	230	280
1.2 Минимальное межосевое расстояние s_{min} (мм)	60	60	60	80	80	125	130	160
HVD				HKD / H	HKD wol	!		
HKD	-	M8X30	M10X30	M8X40	M10X40	M12X50	M16X65	M20X80
Эффективная глубина анкеровки h_{ef} (мм)	-	30	30	40	40	50	65	80
Минимальная толщина основания h_{min} (мм)	-	100	100	100	100	100	130	160
	2. Oc	нование	без треп	цин				
2.1 Минимальное краевое расстояние c_{min} (мм)	-	80	80	140	140	175	230	280
для межосевого расстояния s (мм)	-	120	120	80	80	125	130	160
2.2 Минимальное межосевое расстояние s_{min} (мм)	-	60	60	80	80	125	130	160
для краевого расстояния c (мм)	-	105	105	140	140	175	230	280

Таблица 6.2 – Параметры для расчета прочности при растяжении для анкеров НКD

HKD Mex30 Me		HKD-S/HKD-SR/HKD-E/HKD-ER/HKD/HKDv								
1.1. Нормативное значение силы N _{ext} (кН); KIND-S/ IMED-S/ IME	HKD									
1.1. Нормативное значение силы N _{ext} (кН); KIND-S/ IMED-S/ IME	1. Pa3j	рушени	е по ста.	ти (п.6.1	.1)					
HKD-S/ HKD-SR HKD-ER S				•						
болты / шпильки кл. 4.6 8,0 14,6 23,2 14,6 23,2 33,7 62,8 98,6 болты / шпильки кл. 5.6 10,1 18,3 18,5 19,9 42,2 54,7 86,6 болты / шпильки кл. 8.8 10,1 17,4 18,5 17,4 19,9 35,3 54,7 86,6 болты / шпильки кл. 8.8 13,4 17,4 18,5 17,4 19,9 13,3 64,2 102 HKD / HKD wol 6 1.2 1.6 19,9 14,6 22,1 33,7 62,8 98,6 6олты / шпильки кл. 4.6 - 14,6 19,9 14,6 22,1 33,7 62,8 98,7 1.2 1.5 1.5 1.5 1.9 14,6 22,1 36,6 67,5 99,9 1.2 1.2 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	сопротивления анкера по стали $N_{n,s}$ (кH):									
Болты / шпильки кл. 5.6	HKD-S / HKD-SR / HKD-E / HKD-ER:									
болты / шпильки кл. 5.8 10,1 17,4 18,5 17,4 19,9 35,3 54,7 86,6 болты / шпильки кл. 8.8 13,4 17,4 18,5 17,4 19,9 35,3 54,7 86,6 болты / шпильки сл. 40-70 12,8 16,8 - - 21,1 37,3 62,2 102 НКD / HXD wol - 14,6 19,9 14,6 22,1 33,7 62,8 98,1 1.2. Коэффициент надежности ум - 17,1 19,9 14,6 22,1 36,6 67,5 99,9 1.2. Коэффициент надежности ум - 1,7 19,9 14,6 22,1 36,6 67,5 99,9 1.2. Коэффициент надежности ум - 1,5 1,53 1,49 2,0 1,47 60,715 99,0 1,47 1,47 60,715 1,47 60,715 1,47 60,715 1,47 1,47 1,47 1,47 1,47 1,47 1,47 1,47 1,47 1,47 1,47	болты / шпильки кл. 4.6	8,0	14,6	23,2	14,6	23,2	33,7	62,8	98,0	
болты / шпильки кл. 8.8	болты / шпильки кл. 5.6	10,1	18,3	18,5	18,3	19,9	42,2	54,7	86,9	
ВОЛТБІ/ ШПИЛЬКИ СТ. А40-70 12,8 16,8 21,1 37,3 64,2 102	болты / шпильки кл. 5.8	10,1	17,4	18,5	17,4	19,9	35,3	54,7	86,9	
HKD / HKD wol - 14.6 19.9 14.6 22.1 33.7 62.8 98.9 60лты / шпильки кл. 5.6 / 5.8 / 8.8 - 17.1 19.9 19.4 22.1 36.6 67.5 99.0 1.2. Коэффициент надежности улу HKD-SY / HKD-SY / HKD-EY. - 17.1 19.9 19.4 22.1 36.6 67.5 99.0 1.2. Коэффициент надежности улу HKD-SY / HKD-SY / HKD-SY / HKD-EY. - 1.5 1.5 1.5 2.0 1.49 2.0 1.49 2.0 1.47 2.0 1.47 60.7 1.47 60.7 1.47 60.7 1.47 60.7 1.47 1.47 60.7 1.47	болты / шпильки кл. 8.8	13,4	17,4	18,5	17,4	19,9	35,3	54,7	86,9	
Солты / ШПИЛЬКИ КЛ. 4.6 - 14.6 19.9 14.6 22.1 33.7 62.8 98.8 60.0 гы / ШПИЛЬКИ КЛ. 5.6 5.8 8.8 - 17.1 19.9 19.4 22.1 36.6 67.5 99.9		12,8	16,8	-	-	21,1	37,3	64,2	102,0	
1.2. Коэффициент надежности уль 1.3 19.9 19.4 22.1 36.6 67.5 99.0 1.2. Коэффициент надежности уль 1.4 19.9 19.4 22.1 36.6 67.5 99.0 1.2. 1.4										
1.2. Коэффициент надежности №		-		· ·		-			98,0	
HKD-S / HKD-E / HKD-E R: 60лты / шпильки кл. 4.6		-	17,1	19,9	19,4	22,1	36,6	67,5	99,0	
болты / шпильки кл. 4.6 болты / шпильки кл. 5.6 болты / шпильки кл. 5.8 болты / шпильки кл. 8.8 болты / шпильки кл. 4.6 болты / шпильки кл. 5.6 /5.8/8.8 - 2.0 1.5 2.0 1.5 2.0 1.6 2.0 1.6 2.0 1.6 2.0 1.6 2.0 1.6 2.0 1.6 2.0 1.6 2.0 1.6 2.0 1.6 2.0 1.6 2.0 1.6 2.0 1.6 2.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2										
болты / шпильки кл. 5.6 болты / шпильки кл. 5.8 1.5 1.53 1.49 1.53 1.49 1.53 1.49 1.47 болты / шпильки кл. 5.8 1.5 1.53 1.49 1.53 1.49 1.47 1.47 болты / шпильки кл. 8.8 1.53 1.49 1.53 1.49 1.53 1.49 1.47 1.47 болты / шпильки кл. 4.6 6олты / шпильки кл. 4.6 6олты / шпильки кл. 4.6 6олты / шпильки кл. 5.6 /5.8/8.8 - 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5										
болты / шпильки кл. 5.8 болты / шпильки кл. 8.8 1.53 1.49 1.53 1.49 1.53 1.49 1.47 1.47 болты / шпильки кл. 8.8 1.53 1.49 1.53 1.49 1.53 1.49 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47				l	i	í	1	ı		
болты / шпильки кл. 8.8 болты / шпильки кл. 4.6 г. 2.0 1.83 г. 3 г. 3 г. 3 г. 4 г. 3 г. 3 г. 3 г.		l '	i							
1.83				-						
HKD / HKD wol				1,49	1,53	1,			47	
болты / шпильки кл. 4.6 - 2.0 1,5 2.0 1,5 2,0 2. Разрушение по контакту с основанием (п.б.1.2) 2.1 Нормативное значение силы сопротивления анкера по контакту с основанием (п.б.1.2) 2.2 Коэффициент условий работы γνρ HKD-S/ HKD-SR / HKD-E / HKD-ER - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -		1,	8 <i>3</i> I		- 		1, I	83 I	Ī	
2. Разрушение по контакту с основанием (п.6.1.2) 2.1 Нормативное значение силы сопротивления анкера по контакту с основанием № п.6.1.2) 2.2 Коэффициент условий работы № р НКD-S/ НКD-SR / НКD-ER НКD-ER НКD-HKD-ER НКD-ER НКD-E Р НКD-ER НКD-E Р НКD-ER НКD-E Р НСD-E Р НСD-			2.0	1.5	2.0	1.5		1		
2. Разрушение по контакту с основанием (п.6.1.2) 2.1 Нормативное значение силы сопротивления анкера по контакту с основания № № № № № № № № № № № № № № № № № № №		-	2,0	1,5	2,0			2,0		
2.1 Нормативное значение силы сопротивления анкера по контакту с основанием $N_{n,p}$ (кН) * 2.2 Коэффициент условий работы $\gamma_{n,p}$ НКD-S/ НКD-SR / НКD-E/ НКD-ER НКD / НКD wol 1,0		-			((
сопротивления анкера по контакту с основанием $N_{n,p}$ (кН) * 2.2 Коэффициент условий работы γ_{Np}		по конт	акту с о	сновані	ием (п.6	.1.2)	1	1	1	
основанием N _{n,p} (кН) * 2.2 Коэффициент условий работы ум _p HKD-S / HKD-SR / HKD-ER HKD / HKD wol 2.3 Коэффициент, учитывающий фактическую прочность бетона основания ψ _c . Бетон C20/25 Бетон C30/37 Бетон C35/45 Бетон C40/50 Бетон C45/55 Бетон C45/55 Бетон C50/60 3. Разрушение от выкалывания бетона основания (п. 6.1.3) 3.1 Эффективная глубина анкеровки h _d (мм) 30 30 30 40 40 50 65 80 3.2 Коэффициент условий работы ум _c HKD-S / HKD-SR / HKD-E / HKD-ER HKD / HKD wol 4. Разрушение от раскалывания основания (п. 6.1.4) 4.1 Критическое краевое расстояние при раскалывания селья (п. 6.1.4) 4.2 Критическое межосевое расстояние					0.0					
2.2 Коэффициент условий работы № 1,2		-	-	-	9,0	-	-	-	-	
HKD-S / HKD-SR / HKD-ER - - 1,2 -										
HKD / HKD wol - - - 1,0 -					1.2					
2.3 Коэффициент, учитывающий фактическую прочность бетона основания ус: Бетон C20/25		-	-	-		-	-	-	-	
фактическую прочность бетона основания ψс: Бетон C20/25 Бетон C25/30 Бетон C30/37 Бетон C35/45 Бетон C40/50 Бетон C45/55 Бетон C50/60 3. Разрушение от выкалывания бетона основания (п. 6.1.3) 3.1 Эффективная глубина анкеровки № (мм) 30 30 30 40 40 50 65 80 3.2 Коэффициент условий работы № 1,0 1,2 1,0 1,0 1,2 1,0 1,2 1,0 1,0 1,2 1,0 1,0 1,2 1,0 1,0 1,2 1,0 1,0 1,2 1,0 1,0 1,2 1,0 1,0 1,2 1,0 1,0 1,2 1,0 1,0 1,2 1,0 1,0 1,2 1,0 1,0 1,2 1,0 1,2 1,0 1,0 1,2 1,0 1,0 1,2 1,0 1,0 1,2 1,0 1,0 1,2 1,0 1,0 1,2 1,0 1,0 1,2 1,0 1,0 1,2 1,0 1,0 1,2 1,0 1,0 1,2 1,0 1,0 1,2 1,0 1,2 1,0 1,2 1,0 1,0 1,2 1,0 1,0 1,2 1,0 1,0 1,2 1,0 1,0 1,2 1,0 1,0 1,2 1,0 1,0 1,2 1,0 1,0 1		-	-	-	1,0	-	-	-	-	
Бетон C20/25 Бетон C25/30 Бетон C30/37 Бетон C35/45 Бетон C40/50 Бетон C40/50 Бетон C45/55 Бетон C50/60 3. Разрушение от выкалывания бетона основания (п. 6.1.3) 3.1 Эффективная глубина анкеровки hef (мм) 30 30 30 40 40 50 65 80 3.2 Коэффициент условий работы γмс НКD-S/ HKD-SR / HKD-E/ HKD-ER HKD/ HKD wol - 1,0 1,2 1,0 4. Разрушение от раскалывания основания (п. 6.1.4) 4.1 Критическое краевое расстояние при раскалывания основания (п. 6.1.4) 4.2 Критическое межосевое расстояние										
Бетон C25/30 1,1 Бетон C30/37 1,34 Бетон C35/45 1,34 Бетон C40/50 1,41 Бетон C45/55 1,48 Бетон C50/60 1,55 З. Разрушение от выкалывания бетона основания (п. 6.1.3) 3.1 Эффективная глубина анкеровки № (мм) 30 30 40 40 50 65 80 3.2 Коэффициент условий работы № (крустичент условий работы условий работы условий работы услови условий работы услови услови услови услови услови услови услови усло					1	.0				
Бетон C30/37 1,34 Бетон C40/50 1,41 Бетон C45/55 1,48 Бетон C50/60 1,55 3. Разрушение от выкалывания бетона основания (п. 6.1.3) 3.1 Эффективная глубина анкеровки № (мм) 30 30 40 40 50 65 80 3.2 Коэффициент условий работы № (мкр. в) / HKD-S / HKD-SR / HKD-E / HKD-ER 1,0 1,2 1,0 1,0 1,0 1,2 1,0										
Бетон C35/45 1,34 Бетон C40/50 1,41 Бетон C45/55 1,48 Бетон C50/60 1,55 3. Разрушение от выкалывания бетона основания (п. 6.1.3) 3.1 Эффективная глубина анкеровки № (мм) 30 30 30 40 40 50 65 80 3.2 Коэффициент условий работы № (нКD-S/ HKD-SR / HKD-E / HKD-ER) 1,0 1,2 1,0 1,0 1,2 1,0					•	,.				
Бетон C40/50 1,41 Бетон C45/55 1,48 Бетон C50/60 1,55 3. Разрушение от выкалывания бетона основания (п. 6.1.3) 3.1 Эффективная глубина анкеровки № (мм) 30 30 30 40 40 50 65 80 3.2 Коэффициент условий работы № (нКD-S / HKD-S / HKD-E / HKD-E / HKD-ER) 1,0 1,2 1,0 1,0 1,2 1,0					1.	34				
Бетон C45/55 3. Разрушение от выкалывания бетона основания (п. 6.1.3) 3.1 Эффективная глубина анкеровки h_{ef} (мм) 30 30 30 40 40 50 65 80 3.2 Коэффициент условий работы γ_{Nc} НКD-S / HKD-SR / HKD-E / HKD-ER 1,0 1,2 1,0 1,0 1,0 1,2 1,0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
Бетон C50/60 1,55 3. Разрушение от выкалывания бетона основания (п. 6.1.3) 3.1 Эффективная глубина анкеровки № (мм) 30 30 30 40 40 50 65 80 3.2 Коэффициент условий работы № (нКD-S / HKD-SR / HKD-E / HKD-ER 1,0 1,0 1,2 1,0 1,0 1,0 1,2 1,0										
3. Разрушение от выкалывания бетона основания (п. 6.1.3) 3.1 Эффективная глубина анкеровки h_{ef} (мм) 30 30 40 40 50 65 80 3.2 Коэффициент условий работы γ_{Nc} HKD-S / HKD-SR / HKD-ER / HKD-ER 1,0 1,2 1,0										
3.1 Эффективная глубина анкеровки hef (мм) 30 30 40 40 50 65 80 3.2 Коэффициент условий работы γλε HKD-S / HKD-SR / HKD-ER / HKD-ER 1,0 1,2 1,0			ания бе	гона осн	ования	(п. 6.1.3	3)			
HKD-S/ HKD-SR / HKD-E / HKD-ER 1,0 1,2 1,0 1,0 1,2 1,0	3.1 Эффективная глубина анкеровки <u>hef</u> (мм)	30	30	30	40	40	50	65	80	
HKD-S/ HKD-SR / HKD-E / HKD-ER 1,0 1,2 1,0 1,0 1,2 1,0										
HKD / HKD wol - 1,0 1,2 1,0 4. Разрушение от раскалывания основания (п. 6.1.4) 4.1 Критическое краевое расстояние при раскалывании с _{сг,sp} (мм) 105 105 105 140 140 175 227 280 4.2 Критическое межосевое расстояние 210 210 210 280 280 350 455 560			1,0		1,2		1	,0		
4. Разрушение от раскалывания основания (п. б.1.4) 4.1 Критическое краевое расстояние при раскалывании с _{сг,sp} (мм) 105 105 105 140 140 175 227 280 4.2 Критическое межосевое расстояние 210 210 210 280 280 350 455 560		-	1	1,0			1	,0		
4.1 Критическое краевое расстояние при раскалывании c _{cr,sp} (мм) 105 105 105 140 140 175 227 280 4.2 Критическое межосевое расстояние 210 210 210 280 280 350 455 560		г раскал	ывания	н основа	ния (п.	6.1.4)				
раскалывании $c_{cr,sp}$ (мм) 105 105 106 140 140 175 227 280 4.2 Критическое межосевое расстояние 210 210 280 280 350 455 560							175	227	200	
4.2 Критическое межосевое расстояние		105	105	105	140	140	1/5	221	280	
		210	210	210	200	204	250	155	560	
	при раскалывании $s_{cr,sp}$ (мм)	210	210	210	280	280	330	433	300	
4.3 Коэффициент условий работы <i>у</i> ус										
HKD-S/HKD-SR/HKD-E/HKD-ER 1,0 1,2 1,0										
HKD / HKD wol - 1,0 1,2 1,0		<u> </u>	1	0,1		<u> </u>	1	,0		
*Для анкеров HKD с неустановленной величиной силы сопротивления $N_{n,p}$ проверку прочности по	*Для анкеров НКО с неустановленной вели	ичиной (силы сог	іротивле	ения $\overline{N_{n,p}}$	проверн	ку прочн	ости по		
контакту с основанием допускается не выполнять – определяющими являются другие формы										
разрушения.	разрушения.									

Таблица 6.3 - Параметры для расчета прочности при сдвиге для анкеров НКО

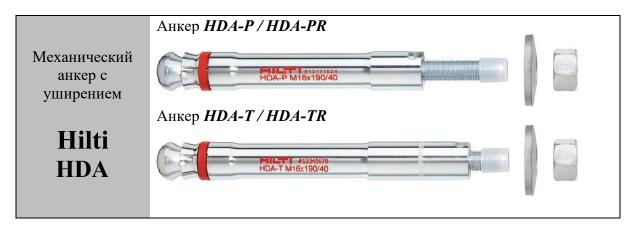

ИКО Мак 20 Мак 20 Мак 20 Мак 20 Mac 20 </th <th></th> <th>HKD-</th> <th>S/HK</th> <th>D-SR /</th> <th>HKD-E</th> <th>/ HKD-</th> <th>ER / HI</th> <th>KD / HK</th> <th>D wol</th>		HKD-	S/HK	D-SR /	HKD-E	/ HKD-	ER / HI	KD / HK	D wol
Пераративное значение силы составите водения выкра поставии без учета дополнительного момента V _{ss} (кВт) КВ-S (кВ-S (кВ	HKD	M6X30	M8X30	M10X3	M8X40	_			
1. Разрушение по стали (п.б.2.1) 1. Нормативное значение силы сопротивления анкера по стали без учета дологинительного момента V _{ac} (кН): 1. Нормативное значение по стали без учета дологинительного момента V _{ac} (кН): 1. Нормативное значение пределанного момента V _{ac} (кН): 1. Нормативное значение пределанного момента для анкера по стали M ² (в1.1): 1. Нормативное кл. 5.6	Эффективная глубина анкеровки	30	30	30	40				-
1.1 Нормативное значение силы сопротивления анжера по стали без учета дополнительного момента V _{xx} (кНт). в неводинального момента V					-	40	30	03	80
сопротивления анкера по стали без учета дополнительного момента V _{ss} (кН): НКD-S/ НКD-E/ НКD-ER: болты / шпильки кл. 4.6 б. 5,0 7.0 7.4 7.3 8.0 16,9 21,9 34,7 болты / шпильки кл. 5.6 5.0 7.0 7.4 7.0 8.0 14,1 21,9 34,7 болты / шпильки кл. 5.8 5.0 7.0 7.4 7.0 8.0 14,1 21,9 34,7 болты / шпильки кл. 8.8 5.3 7.0 7.4 7.0 8.0 14,1 21,9 34,7 болты / шпильки кл. 8.8 5.3 7.0 7.4 7.0 8.0 14,1 21,9 34,7 болты / шпильки кл. 8.8 5.3 7.0 7.4 7.0 8.0 14,1 21,9 34,7 болты / шпильки кл. 8.8 5.3 10.0 7.3 11.0 16,9 31,4 49.0 болты / шпильки кл. 4.6-6 8.4 8.4 — 10,5 18,7 32,1 51.0 HKD/ HKD wol 60лты / шпильки кл. 5.6 / 5.8 8.8 5.3 10.0 7.3 11.0 16,9 31,4 49.0 болты / шпильки кл. 5.6 / 5.8 8.8 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2		рушени	е по ста	ли (п.6.	.2.1)	1			
MKD-S MKD-SR MKD-E MKD-E MKD-E MKD-E MKD-SR MKD-E M									
HKD-S/ HKD-E/ HKD-ER									
болты / шинильки кл. 4.6 4,0 7,3 7,4 7,3 8,0 16,9 21,9 34,7 болты / шинильки кл. 5.8 5,0 7,0 7,4 7,0 8,0 14,1 21,9 34,7 болты / шинильки кл. 5.8 5,0 7,0 7,4 7,0 8,0 14,1 21,9 34,7 болты / шинильки кл. 4.6 6,4 8,4 - - 10,5 18,7 32,1 51,0 HKD / HKD wol 6,5 5,6 5,8 10,0 7,3 11,0 18,3 33,8 49,5 1,2. Коэффициент надежности угу HKD-S / HKD-SR / HKD-E / HKD-SR / HK									
болты / шивльки кл. 5.6 5,0 7,0 7,4 7,0 8,0 14,1 21,9 34,7 болты / шивльки кл. 5.8 5,0 7,0 7,4 7,0 8,0 14,1 21,9 34,7 болты / шивльки кл. 5.8 5,3 7,0 7,4 7,0 8,0 14,1 21,9 34,7 болты / шивльки кл. 5.6 6.4 8,4 — — 10,5 18,7 32,1 51,0 HKD / HKD wol 6 6.7 7,3 10,0 7,3 11,0 16,9 31,4 49,0 6 олты / шивльки кл. 5.6 5.8 / 8.8 - 8,6 10,0 9,2 11,0 18,3 33,8 49,5 НК D-S / HKD-SR / HKD-E / HKD-S / HKD-SR / HKD-E / 1 1,67 1,25 1,67 1,25 1,67 1,25 1,25 1,67 1,25 1,25 1,25 1,25 1,25 1,25 1,25 1,25 1,27 1,25 1,27 1,25 1,25 1,27									
Волты / Шпильки кл. 5.8		· ′			-		-		
Болты / Шпильки кл. 8.8				,				1	
Болты / Шпильки ст. А40-70		· ′						1	
НКD / НКD wol болты / шпильки кл. 4.6				7,4	7,0				
болты / шпильки кл. 4.6 облять / шпильки кл. 5.6 / 5.8 / 8.8 - 8.6 10.0 9.2 11.0 16.9 31.4 49.0 49.5 4		6,4	8,4	_	_	10,5	18,7	32,1	51,0
1.2. Коэффициент надежности угу 1.67 1.67 1.25 1.67 1.25 1.67 1.25		_	7.2	10.0	7.2	11.0	16.0	21.4	40.0
1.2. Коэффициент надежности ууз HKD-Sr / HIND-Sr / HKD-Sr		_	,		-	,			
HKD-S / HKD-E/ HKD-ER: Image: Contral / шпильки кл. 4.6 1.67 1.67 1.25 1.67 1.25 1.67 1.25 1.25 1.67 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.27 1.25 1.27 1.25 1.27 1.25 1.27 1.25 1.27 1.25 1.27 1.25 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67			0,0	10,0	9,2	11,0	10,3	33,6	49,3
НКО-ER: 6 олты / шпильки кл. 4.6 1,67 1,67 1,25 1,67 1,25									
болты / шпильки кл. 4.6 болты / шпильки кл. 5.6 болты / шпильки кл. 5.8 болты / шпильки кл. 8.8 плинильки кл. 8.8 плинильки кл. 8.8 плинильки кл. 4.6 болты / шпильки кл. 4.6 болты / шпильки кл. 4.6 болты / шпильки кл. 4.6 болты / шпильки кл. 5.8 плинильки кл. 4.6 болты / шпильки кл. 5.8 плинильки кл. 5.8 / 8.8 плинильки кл. 5.8 / 8.8 плинильки кл. 5.8 / 8.8 плинильки кл. 5.8 / 8.8 плинильки кл. 5.6 болты / шпильки кл. 5.6 болты / шпильки кл. 5.6 болты / шпильки кл. 5.6 плинильки кл. 5.8 / 8.8 плинильки кл. 5.8 плинильки кл. 5.8 / 8.8 плинильки кл. 5.8 / 8.8 плинильки кл. 5.8 плинильки кл. 5.8 / 8.8 плинильки кл. 5.8 / 8.8 пл									
болты / шпильки кл. 5.6 1,67 1,27 1,25 1,27 1,25 <th< td=""><td></td><td>1.67</td><td>1 67</td><td>1.25</td><td>1.67</td><td>1.25</td><td>1.67</td><td>1.25</td><td>1.25</td></th<>		1.67	1 67	1.25	1.67	1.25	1.67	1.25	1.25
болты / шпильки кл. 5.8 болты / шпильки кл. 8.8 солты / шпильки кл. 8.8 нКD / HKD wol 1,25 1,27 1,25 1,27 1,25 1,27 1,25 1,27 1,25 1,27 1,25 1,27 1,25 1,27 1,25 1,52 1,52 1,52 1,52 1,52 1,52 1,52		1					-		·
болты / шпильки кл. 8.8 болты / шпильки ст. А40-70 1,27 1,52 1,25 1,52 1,25 1,25		1					-		
болты / шпильки ст. А40-70 НКD / HKD wol болты / шпильки кл. 4.6 болты / шпильки кл. 5.6 болты / шпильки кл. 5.6 болты / шпильки кл. 5.8 / 8.8 - 1,52 1,25 1,25 1,25 1,25 1,25 1,25 1,25		1							-
HKD / HKD wol болты / шпильки кл. 4.6 болты / шпильки кл. 5.6 болты / шпильки кл. 5.8 / 8.8 - 1.67 1.25 1.67 1.25 1.25 1.25 1.67 1.25 1.25 1.25 1.67 1.25 1.25 1.25 1.2		1		1,23	1,2/	,		-	·
болты / шпильки кл. 4.6 болты / шпильки кл. 5.6 болты / шпильки кл. 5.6 г. 1,25 г. 1		1,32	1,32	_	_	1,32	1,32	1,32	1,32
болты / шпильки кл. 5.6 болты / шпильки кл. 5.8 / 8.8 - 1,25 <td></td> <td>_</td> <td>1.67</td> <td>1.25</td> <td>1.67</td> <td>1.25</td> <td>1.67</td> <td>1.67</td> <td>1.67</td>		_	1.67	1.25	1.67	1.25	1.67	1.67	1.67
1.3 Нормативное значение предельного момента для анкера по стапи № (п. 62.3) 1.3 Нормативное значение предельного момента для анкера и № (п. 6.2.3) 1.3 Нормативное значение предельного момента для анкера и № (п. 6.2.3) 1.3 Нормативное значение предельного момента для анкера и № (п. 6.2.3) 1.3 Нормативное значение предельного момента для анкеровки и № (п. 6.2.3) 1.3 Нормативное значение предельного поты для анкеровки и при для и № (п. 6.2.3) 1.3 Нормативное значение предельного поты для и № (п. 6.2.3) 1.3 Нормативное значение предельного поты для для и № (п. 6.2.3) 1.3 Нормативное значение предельного поты для		_					-	_ ′	,
1.3 Нормативное значение предельного момента для анкера по стали M ⁰ n,s (H·м) HKD-S/ HKD-SR / HKD-E / HKD-ER / HKD wol: болты / шпильки кл. 4.6 6 15 30 15 30 52 133 260 болты / шпильки кл. 5.6 / 5.8 8 19 37 19 37 65 166 325 болты / шпильки кл. 8.8 12 30 60 30 60 105 266 519 болты / шпильки ст. A40-70 11 26 - - 52 92 233 454 1.4 Коэффициент надежности γι ₈ HKD-S / HKD-SR / HKD-E / HKD-FE / HKD-FE / HKD-HKD Wol: болты / шпильки кл. 4.6 / 5.6 1,67 60 60 1,67 60 60 1,56 1.5		_	1,23	1,23	1,07		1,23	1,23	1,23
момента для анкера по стали M ⁰ _{n,s} (H·м) HKD-S / HKD-SR / HKD-E / HKD-ER / HKD / HKD wol: Image: Record of the control of						1,			
HKD-S / HKD-SR / HKD wol: болты / шпильки кл. 4.6 болты / шпильки кл. 5.6 / 5.8 болты / шпильки кл. 5.6 / 5.8 болты / шпильки кл. 8.8 12 болты / шпильки кл. 8.8 12 болты / шпильки кл. 4.0-70 1.4 Коэффициент надежности γ_{V_S} НКD-S / HKD-SR / HKD-E / НКD-S / HKD-SR / HKD-E / НКD-ER / HKD / HKD wol: болты / шпильки кл. 5.8 / 8.8 болты / шпильки кл. 5.8 / 8.8 болты / шпильки кл. 5.8 / 8.8 болты / шпильки ст. А40-701.67 1.5 Коэффициент условий групповой работы анкеров λ_s 1.5 Коэффициент условий групповой работы анкеров λ_s 2. Разрушение от выкалывания бетона основания за анкером (п.6.2.2)3.1 Приведенная глубина анкеровки гру сдвиге l_f (мм)1.03.1 Приведенная глубина анкеровки при сдвиге l_f (мм)30303040405065803.2 Номинальный диаметр анкера d_{nom} (мм)810121012152025									
HKD-ER / HKD / HKD wol: болты / шпильки кл. 4.6 болты / шпильки кл. 4.6 болты / шпильки кл. 5.6 / 5.8 болты / шпильки кл. 8.8 болты / шпильки кл. 8.8 12 1.4 Коэффициент надежности γ_{V_S} НКD-S / HKD-SR / HKD-E / НКD-ER / HKD / HKD wol: болты / шпильки кл. 5.8 / 8.8 болты / шпильки кл. 5.8 / 8.8 болты / шпильки кл. 4.6 / 5.6 болты / шпильки кл. 5.8 / 8.8 болты / шпильки ст. A40-701.67 1.561.5 Коэффициент условий групповой работы анкеров λ_s 1.67 1.5 Коэффициент условий групповой работы анкеров λ_s 2.1 Коэффициент учета глубины анкеровки k 2.2 Коэффициент учета глубина анкеров (т. 6.2.2)2.03.1 Приведенная глубина анкеровки при сдвиге l_f (мм)30303040405065803.2 Номинальный диаметр анкера d_{nom} (мм)810121012152025									
болты / шпильки кл. 4.6 болты / шпильки кл. 5.6 / 5.8 болты / шпильки кл. 8.8 болты / шпильки кл. 8.8 болты / шпильки кл. 8.8 болты / шпильки кл. 8.8 болты / шпильки ст. A40-70 11 1.4 Коэффициент надежности γ_{l3} НКD-S / HKD-E / НКD-S / HKD-E / НКD-ER / HKD / HKD wol: болты / шпильки кл. 5.8 / 8.8 болты / шпильки кл. 5.8 / 8.8 болты / шпильки кт. 5.8 / 8.8 болты / шпильки ст. A40-701.67 1.55 1.551.67 1.561.5 Коэффициент условий групповой работы анкеров λ_s 1.01.02. Разрушение от выкалывания бетона основания за анкером (п. 6.2.2)2.1 Коэффициент условий работы γ_{Cp} 1.03. Разрушение от откалывания края основания (п. 6.2.3)3.1 Приведенная глубина анкеровки при сдвиге l_f (мм)303040405065803.2 Номинальный диаметр анкера d_{nom} (мм)810121012152025									
болты / шпильки кл. 5.6 / 5.8 8 19 37 19 37 65 166 325 болты / шпильки кл. 8.8 12 30 60 30 60 105 266 519 болты / шпильки ст. А40-70 11 26 - - 52 92 233 454 1.4 Коэффициент надежности γ/г ₅ HKD-S / HKD-E / HKD-E / HKD-HKD wol: болты / шпильки кл. 4.6 / 5.6 1,67 50 1,56 1.56 <td></td> <td>6</td> <td>15</td> <td>30</td> <td>15</td> <td>30</td> <td>52</td> <td>133</td> <td>260</td>		6	15	30	15	30	52	133	260
болты / шпильки кл. 8.8 болты / шпильки ст. А40-70 11 26 - 5 52 30 60 105 266 519 519 20 233 454 1.4 Коэффициент надежности угь НКД-SR / HKД-SR / HKД-S					-		-		
1.4 Коэффициент надежности $\gamma_{l/s}$ НКD-S/ HKD-SR / HKD-E / HKD-ER / HKD-EK /		12	30	60	30	60	105	266	519
1.4 Коэффициент надежности $\gamma_{l/s}$ НКD-S/ HKD-SR / HKD-E / HKD-ER / HKD-EK /	болты / шпильки ст. А40-70	11	26	_	_	52	92	233	454
HKD-S / HKD-SR / HKD wol: болты / шпильки кл. 4.6 / 5.6 1,67 болты / шпильки кл. 5.8 / 8.8 1,25 болты / шпильки ст. А40-70 1,56 1.5 Коэффициент условий групповой работы анкеров λ _s 1,0 2. Разрушение от выкалывания бетона основания за анкером (п.6.2.2) 2.1 Коэффициент учета глубины анкеровки k 2,0 2.2 Коэффициент условий работы γ/cp 1,0 3.1 Приведенная глубина анкеровки при сдвиге l _f (мм) 30 30 30 40 40 50 65 80 3.2 Номинальный диаметр анкера d _{пом} (мм) 8 10 12 10 12 15 20 25					•		•	•	
болты / шпильки кл. $4.6 / 5.6$ болты / шпильки кл. $5.8 / 8.8$ 1,25 болты / шпильки ст. A40-70 1,56 1.5 Коэффициент условий групповой работы анкеров λ_s 1,0 2. Разрушение от выкалывания бетона основания за анкером (п.6.2.2) 2.1 Коэффициент учета глубины анкеровки k 2,0 2.2 Коэффициент условий работы γ_{Vcp} 1,0 3. Разрушение от откалывания края основания (п. 6.2.3) 3.1 Приведенная глубина анкеровки при сдвиге l_f (мм) 30 30 30 40 40 50 65 80 сдвиге l_f (мм) 8 10 12 10 12 15 20 25 (мм)									
болты / шпильки кл. $5.8 / 8.8$ болты / шпильки ст. $A40$ -70 1,56 1.5 Коэффициент условий групповой работы анкеров λ_s 1,0 2. Разрушение от выкалывания бетона основания за анкером (п.6.2.2) 2.1 Коэффициент учета глубины анкеровки k 2,0 2.2 Коэффициент условий работы γ_{VCP} 1,0 3. Разрушение от откалывания края основания (п. 6.2.3) 3.1 Приведенная глубина анкеровки при сдвиге l_f (мм) 3.2 Номинальный диаметр анкера d_{nom} 8 10 12 10 12 15 20 25 (мм)	HKD-ER / HKD / HKD wol:								
болты / шпильки ст. А40-701,561.5 Коэффициент условий групповой работы анкеров λ_s 1,02. Разрушение от выкалывания бетона основания за анкером (п.6.2.2)2.1 Коэффициент учета глубины анкеровки k 2,02.2 Коэффициент условий работы γ_{VCP} 1,03. Разрушение от откалывания края основания (п. 6.2.3)3.1 Приведенная глубина анкеровки при сдвиге l_f (мм)303040405065803.2 Номинальный диаметр анкера d_{nom} (мм)810121012152025	болты / шпильки кл. 4.6 / 5.6				1,	67			
болты / шпильки ст. А40-701,561.5 Коэффициент условий групповой работы анкеров λ_s 1,02. Разрушение от выкалывания бетона основания за анкером (п.6.2.2)2.1 Коэффициент учета глубины анкеровки k 2,02.2 Коэффициент условий работы γ_{Vcp} 1,03. Разрушение от откалывания края основания (п. 6.2.3)3.1 Приведенная глубина анкеровки при сдвиге l_f (мм)303040405065803.2 Номинальный диаметр анкера d_{nom} (мм)810121012152025	болты / шпильки кл. 5.8 / 8.8				1,	25			
работы анкеров λ_s	болты / шпильки ст. А40-70								
работы анкеров λ_s 2. Разрушение от выкалывания бетона основания за анкером (п.6.2.2) 2.1 Коэффициент учета глубины анкеровки k 2,0 2.2 Коэффициент условий работы γ_{Cp} 1,0 3. Разрушение от откалывания края основания (п. 6.2.3) 3.1 Приведенная глубина анкеровки при сдвиге l_f (мм) 30 30 30 40 40 50 65 80 сдвиге l_f (мм) 8 10 12 10 12 15 20 25 (мм) 10 12 15 20 25	1.5 Коэффициент условий групповой				1	0			
2.1 Коэффициент учета глубины анкеровки k 2,02.2 Коэффициент условий работы γ_{VCP} 1,03. Разрушение от откалывания края основания (п. 6.2.3)3.1 Приведенная глубина анкеровки при сдвиге l_f (мм)30303040405065803.2 Номинальный диаметр анкера d_{nom} (мм)810121012152025	работы анкеров λ_s				1	,0			
2.1 Коэффициент учета глубины анкеровки k 2,02.2 Коэффициент условий работы γ_{VCP} 1,03. Разрушение от откалывания края основания (п. 6.2.3)3.1 Приведенная глубина анкеровки при сдвиге l_f (мм)30303040405065803.2 Номинальный диаметр анкера d_{nom} (мм)810121012152025	2. Разрушение от выкаль	івания	бетона	основан	ния за ан	кером ((п.6.2.2)		
анкеровки k 2.2 Коэффициент условий работы γ_{Vcp} 3. Разрушение от откалывания края основания (п. 6.2.3) 3.1 Приведенная глубина анкеровки при сдвиге l_f (мм) 30 30 30 40 40 50 65 80 25 (мм)									
2.2 Коэффициент условий работы γ_{CP} 3. Разрушение от откалывания края основания (п. 6.2.3)3.1 Приведенная глубина анкеровки при сдвиге l_f (мм)303040405065803.2 Номинальный диаметр анкера d_{nom} (мм)810121012152025						.,U			
3. Разрушение от откалывания края основания (п. 6.2.3) 3.1 Приведенная глубина анкеровки при сдвиге l_f (мм) 30 30 30 40 40 50 65 80 3.2 Номинальный диаметр анкера d_{nom} (мм) 8 10 12 10 12 15 20 25					1	,0			
3.1 Приведенная глубина анкеровки при сдвиге l_f (мм) 30 30 30 40 40 50 65 80 3.2 Номинальный диаметр анкера d_{nom} 8 10 12 10 12 15 20 25		ткалы	зания к	рая осн	ования	(п. 6.2.3)		
сдвиге l_f (мм) $\frac{30}{30}$ $\frac{30}{30}$ $\frac{40}{40}$ $\frac{40}{30}$ $\frac{80}{63}$ $\frac{80}{80}$ $\frac{30}{30}$ $\frac{30}{30}$ $\frac{40}{40}$ $\frac{40}{30}$ $\frac{80}{63}$ $\frac{80}{80}$ $\frac{30}{30}$ $\frac{10}{30}$ $\frac{10}{12}$ $\frac{10}{12}$ $\frac{15}{12}$ $\frac{20}{25}$								(5	00
3.2 Номинальный диаметр анкера d_{nom} 8 10 12 10 12 15 20 25 $(мм)$		30	30	30	40	40	50	65	80
(MM) 8 10 12 10 12 13 20 25			10	12	10	10	1.5	20	2.5
		8	10	12	10	12	15	20	25
	3.3 Коэффициент условий работы γ_{Vc}				1	,0			

Таблица 6.4 – **Параметры для расчета деформативности при растяжении для анкеров НКD**

HKD		HI	KD-S/H	KD-SR /	HKD-E	/HKD-	ER				
HKD	M6X30	M8X30	M10X30	M8X40	M10X40	M12X50	M16X65	M20X80			
1. Смещение анкерог	в от раст	ягиваюц	цих усил	ий в бето	оне без т	рещин (п	ı. 7 . 6)				
1.1. Контрольное значение силы											
на анкер в бетоне С20/25-	3,3	3,3	3,3	3,6	5,1	7,1	12,6	17,2			
$C50/60$ без трещин N_{cont} (кН)											
1.2. Перемещения δ_{N0} (мм)	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1			
1.3. Перемещения $\delta_{N∞}$ (мм)	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2			
HVD	HKD / HKD wol										
HKD	-	M8X30	M10X30	M8X40	M10X40	M12X50	M16X65	M20X80			
2. Смещение анкерог	в от раст	ягиваюц	цих усил	ий в бето	оне без т	рещин (п	ı. 7.6)				
2.1. Контрольное значение силы											
на анкер в бетоне С20/25-	-	4,0	4,0	4,3	6,1	8,5	12,6	17,2			
$C50/60$ без трещин N_{cont} (кН)											
2.2. Перемещения δ _{N0} (мм)	-	0,1	0,1	0,1	0,1	0,1	0,1	0,1			
2.3. Перемещения δ _{N∞} (мм)	-	0,3	0,3	0,3	0,3	0,3	0,2	0,2			

Таблица 6.5 – **Параметры для расчета деформативности при сдвиге для анкеров НКD**

				HKD-S	/ HKD-E			
HKD	M6X30	M8X30	M10X30	M8X40	M10X40	M12X50	M16X65	M20X80
1. Смещение анкер	ов от сд	вигающ	их усили	й в бетон	не без тре	ещин (п.	7.7)	
1.1. Контрольное значение силы на анкер в бетоне $C20/25$ - $C50/60$ без трещин V_{cont} (кН)	1,7	3,1	4,3	3,1	4,6	7,2	12,5	19,8
1.2. Перемещения δ _{V0} (мм)	0,35	0,35	0,35	0,4	0,4	0,45	0,75	0,75
1.3. Перемещения $\delta_{V\infty}$ (мм)	0,5	0,5	0,5	0,6	0,6	0,7	1,1	1,1
			Н	KD-SR	/ HKD-E	'R		
HKD	M6X30	M8X30	M10X30	M8X40	M10X40	M12X50	M16X65	M20X80
2. Смещение анкер	ов от сд	вигающ	их усили	й в бетон	не без тре	ещин (п.	7.7)	
2.1. Контрольное значение силы на анкер в бетоне C20/25-C50/60 без трещин V_{cont} (кН)	1,7	3,9	-	-	4,9	8,8	15,1	24,0
2.2. Перемещения δ _{V0} (мм)	0,35	0,45	-	-	0,45	0,55	0,9	0,9
2.3. Перемещения $\delta_{V\infty}$ (мм)	0,5	0,65	-	-	0,65	0,85	1,3	1,3
				HKD / H	HKD wol			
HKD	-	M8X30	M10X30	M8X40	M10X40	M12X50	M16X65	M20X80
3. Смещение анкер	ов от сд	вигающ	их усили	й в бетон	не без тре	ещин (п.	7.7)	
3.1. Контрольное значение силы на анкер в бетоне C20/25- C50/60 без трещин V_{cont} (кН)	-	3,1	4,3	3,1	4,6	7,2	12,5	19,8
3.2. Перемещения δ_{V0} (мм)	-	0,35	0,35	0,4	0,4	0,45	0,75	0,75
3.3. Перемещения $\delta_{V\infty}$ (мм)	-	0,5	0,5	0,6	0,6	0,7	1,1	1,1

Допускаемые при расчете условия установки: основание бетон C20/25-C50/60 с трещинами и без трещин; ударное сверление.

Таблица 7.1 – Конструктивные требования к размещению анкеров НDА

HDA	I	HDA	-P/	HD.	4-P	R		H	DA-	T/I	HD A	1 - T	R	
HDA	M10	10 M12		M	16	M	20	M10	M12		M16		M20	
Эффективная глубина анкеровки h_{ef} (мм)	100	125		19	90	250		100	12	25	19	90	25	50
Максимальная толщина опорной пластины крепежной детали $t_{fix,max}$ (мм)	20	30	50	40	60	50	100	20	30	50	40	60	50	100
Минимальная толщина основания h_{min} (мм)	180	20	00	27	70	35	50	200 - t_{fix}	$230-t_{fix}$	$250-t_{fix}$	$310-t_{fix}$	$330-t_{fix}$	$400-t_{fix}$	$450-t_{fix}$
	1. Осн	ован	ие с	тре	щин	ами								
1.1 Минимальное краевое расстояние <i>c</i> _{min} (мм)	80	10	100		150 200		00	80	10	00	15	50	20	00
1.2 Минимальное межосевое расстояние <i>s_{min}</i> (мм)	100	12	25	190		250		100	12	25	19	90	25	50
	2. Основание без трещин													
2.1 Минимальное краевое расстояние c_{min} (мм)	80	10	100		50	200		80	10	00	15	50	20	00
2.2 Минимальное межосевое расстояние <i>s_{min}</i> (мм)	100	12	25	19	90	25	50	100	12	25	19	90	25	50

Таблица 7.2 – Параметры для расчета прочности при растяжении для анкеров НDA

HDA	HDA-P/HDA-T HDA-PR/HDA - TR										
пра	M10	M12	M16	M20	M10	M12	M16				
1. Pa3	рушение	по стали	(п.6.1.1)								
1.1. Нормативное значение силы сопротивления анкера по стали $N_{n,s}$ (кН):	46	67	126	192	46	67	126				
1.2. Коэффициент надежности γ_{Ns}	1,5										
2. Разрушение	рушение по контакту с основанием (п.6.1.2)										
2.1 Нормативное значение силы сопротивления анкера по контакту с основанием в бетоне C20/25 с трещинами $N_{n,p}$ (кН)*:	25	35	75	95	25	35	75				
2.2 Коэффициент условий работы γ_{Np}	1,0										

HDA		HDA-P	/HDA-T		HDA-	PR / HD	A - TR					
пра	M10	M12	M16	M20	M10	M12	M16					
2.3 Коэффициент, учитывающий												
фактическую прочность бетона												
основания ψ_c :												
Бетон С20/25				1,0								
Бетон С25/30				1,1								
Бетон С30/37				1,22								
Бетон С35/45				1,34								
Бетон С40/50				1,41								
Бетон С45/55				1,48								
Бетон С50/60												
3. Разрушение от вы	ыкалыва	ния бетоі	на основа	ния (п. 6.	1.3)							
3.1 Эффективная глубина анкеровки h_{ef}	100	125	190	250	100	125	190					
(MM)	100	123	190	230	100	123	190					
3.2 Коэффициент условий работы у _{Nc}				1,0								
4. Разрушение о	т раскалі	ывания о	снования	и (п. 6.1.4))							
4.1 Критическое краевое расстояние при	150	190	285	375	150	190	285					
раскалывании $c_{cr,sp}$ (мм)	130	190	203	373	150	190	263					
4.2 Критическое межосевое расстояние	300	375	570	750	300	375	570					
при раскалывании $s_{cr,sp}$ (мм)	300	313	370	750	300	313	370					
4.3 Коэффициент условий работы γ_{Nsp}				1,0								
* для анкеров HDA в бетоне без трещин п	роверку і	прочности	и по конта	кту с осно	ованием ;	допускае	тся не					
выполнять – определяющими являются др												

Таблица 7.3 – Параметры для расчета прочности при сдвиге для анкеров НDА

IID 4	HDA-P/HDA-T HDA-PR/HDA - TR									
HDA	M10	M12	M16	M20	M10	M12	M16			
1. Разр	ушение	по стали	(п.6.2.1)							
1.1 Нормативное значение силы										
сопротивления анкера по стали без учета										
дополнительного момента $V_{n,s}$ (кH):										
HDA-P, HDA-PR	22	30	62	92	23	34	63			
HDA-T, HDA-TR			С	м. табл. 5.4						
1.2 Нормативное значение предельного	60	105	266	519	60	105	266			
момента для анкера по стали $M^{0}_{n,s}$ (H·м)	00	103	200	319	00	103	200			
1.3. Коэффициент условий групповой	10									
работы анкеров λ_s	1,0									
1.4. Коэффициент надежности γ_{Vs}		1,	25			1,33				
2. Разрушение от выкалы	вания бо	етона осн	ования з	а анкеро	м (п.6.2.2)				
2.1 Коэффициент учета глубины				2,0						
анкеровки <i>k</i>				2,0						
2.2 Коэффициент условий работы γ_{Vcp}				1,0						
3. Разрушение от о	ткалыва	ния края	і основан	ия (п. 6.2	2.3)					
3.1 Приведенная глубина анкеровки при	70	0.0	00	120	70	0.0	00			
сдвиге l_f (мм)	70	88	90	120	/0	88	90			
3.2 Номинальный диаметр анкера	19	21	20	35	10	21	20			
d_{nom} (MM)	19	21	29	33	19	21	29			
3.3 Коэффициент условий работы уvc				1,0						

Таблица 7.4 — **Нормативное значение силы сопротивления анкера HDA-T, HDA-TR** по стали без учета дополнительного момента анкеров $V_{n,s}$

Толщина опорной	Норма	тивное зна	чение сил	ы сопроти	вления анк	сера по ста	ли без				
пластины крепежной		учета доп	олнительн	ого момен	та анкерог	$V_{n,s}(\kappa H)$					
детали t _{fix} (мм)		HDA-T HDA-TR									
gerain thix (wwi)	M10	M12	M16	M20	M10	M12	M16				
$10 \le t_{fix} < 15$	65	80	-	-	71	87	-				
$15 \le t_{\rm fix} \le 20$	70	80	140	-	71	87	152				
$20 \le t_{fix} < 25$	-	100	140	205	-	94	152				
$25 \le t_{fix} < 30$	-	100	155	205	-	94	158				
$30 \le t_{fix} < 35$	-	100	170	205	-	109	158				
$35 \le t_{fix} < 40$	-	100	190	205	-	109	170				
$40 \le t_{fix} \le 50$	-	100	190	235	-	109	170				
$50 < t_{fix} < 55$	-	-	190	235	-	-	170				
$55 \le t_{\rm fix} \le 60$	-	-	190	250	-	-	170				
$60 < t_{fix} \le 100$	-	-	-	250	-	-	-				

Таблица 7.5 – **Параметры для расчета деформативности при растяжении для** анкеров HDA

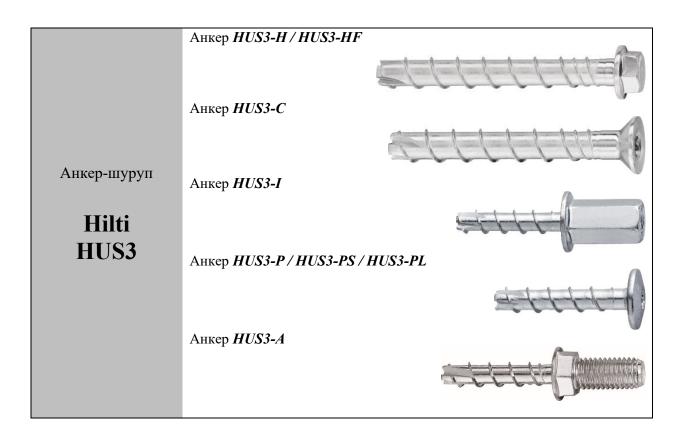

HDA	Н	IDA-P	/HDA-	T	HDA-P	R/HD	A - TR
ПДА	M10	M12	M16	M20	M10	M12	M16
1. Смещение анкеров от растягиваю	цих уси	ілий в (бетоне	без тре	щин (п. ′	7.6)	
1.1. Контрольное значение силы на анкер в бетоне $C20/25$ - $C50/60$ без трещин N_{cont} (кН)	21,9	31,9	60,0	91,4	20,5	29,9	56,3
1.2. Перемещения δ _{N0} (мм)	0,4	0,8	1,7	2,4	1,4	1,1	1,7
1.3. Перемещения $\delta_{N\infty}$ (мм)	1,3	1,3	1,7	2,4	1,4	1,1	1,7
2. Смещение анкеров от растягивающ	их уси.	пий в б	етоне с	трещи	нами (п.	7.6)	
2.1 Контрольное значение силы на анкер в бетоне C20/25-C50/60 с трещинами N_{cont} (кН)	11,9	16,7	35,7	45,2	11,9	16,7	35,7
2.2. Перемещения δ _{N0} (мм)	0,4	0,8	1,7	2,4	0,8	0,9	1,6
2.3. Перемещения $\delta_{N\infty}$ (мм)	1,3	1,3	1,7	2,4	1,3	1,3	2,1

Таблица 7.6 – **Параметры для расчета деформативности при сдвиге для анкеров HDA-P**, **HDA-PR**

HDA-P / HDA-PR		HD	A-P		I	HDA-PI	R
nda-r / nda-rk	M10	M12	M16	<i>M20</i>	M10	M12	M16
1. Смещение анкеров от сдвигающих усили	й в бет	оне с тј	рещина	ми и б	ез трещ	ин (п. 7.	.7)
1.1. Контрольное значение силы на анкер в бетоне $C20/25$ - $C50/60$ с трещинами и без трещин V_{cont} (кН)	11,4	17,1	35,9	51,0	13,3	19,3	35,9
1.2. Перемещения δ _{V0} (мм)	2,8	2,5	4,1	5,0	4,2	3,0	6,9
1.3. Перемещения $\delta_{V\infty}$ (мм)	4,1	3,8	6,2	7,5	6,3	4,5	10,4

Таблица 7.7 – **Параметры для расчета деформативности при сдвиге для анкеров HDA-T, HDA-TR**

HDA-T / HDA-TR		HD	A-T		H	HDA-TI	R
HDA-I / HDA-I K	M10	M12	M16	M20	M10	M12	M16
1. Смещение анкеров от сдвигающих усили	ий в бет	гоне с т	рещина	ми и бе	з трещі	ин (п. 7.	7)
1.1. Контрольное значение силы на анкер в							
бетоне С20/25-С50/60 с трещинами и без трещин	33,3	42,8	95,2	119,0	41,7	46,9	73,7
V_{cont} (кH)							
1.2. Перемещения δ _{V0} (мм)	6,2	6,9	10,1	12,0	4,2	3,0	6,9
1.3. Перемещения $\delta_{V\infty}$ (мм)	9,3	10,3	15,1	18,0	6,3	4,5	10,4

Допускаемые при расчете условия установки: основание бетон C20/25-C50/60 с трещинами и без трещин; ударное сверление.

Таблица 8.1 – Конструктивные требования к размещению анкеров HUS3

					HUS3					
Тип исполнения анкера	6		8			10			14	
тип исполнения анкера	-H, -A, -I, -C, -P, -PS, -PL	-H	, -HF,	-C	-H	I, -HF,	-C	-Н,	-HF	- H
Номинальная глубина анкеровки h_{nom} (мм)	55	50	60	70	55	75	85	65	85	115
Эффективная глубина анкеровки h_{ef} (мм)	42	40	46,4	54,9	41,6	58,6	67,1	49,3	66,3	91,8
Минимальная толщина основания h_{\min} (мм)	100	100	100	120	100	130	140	120	160	200
1	. Основание с	трещи	нами	и без т	грещи	H				
1.1 Минимальное краевое расстояние c_{\min} (мм)	35	40	40	40	50	50	50	60	60	60
1.2 Минимальное межосевое расстояние <i>s</i> _{min} (мм)	35	50 (40*)	50	50	50	50	50	60	60	60
Примечание: * – минимальное м 50 мм.	межосевое расс	тояни	е 40 мм	и в слу	чае, ес	ли кра	евое ра	асстоя	ние не	менее

Таблица 8.2 – Параметры для расчета прочности при растяжении для анкеров HUS3

							HUS	3					
			6			8			10			14	
Тип исполнения анкера	-H, -A, -I	-C	-P	-PS, -PL	-H,	, -HF,	-C	-H,	-HF,	-C	-Н,	-HF	-Н
Номинальная глубина		5	55		50	60	70	55	75	85	65	85	115
анкеровки h_{nom} (мм)									, 0	00	0.0	00	110
	Разј	уше	ние г	10 ста	ли (п	.6.1.1)						
1.1. Нормативное значение силы сопротивления анкера по стали Nn,s (кH):	24,0	22,0	24,0	21,0	39,2				62,2				
1.2. Коэффициент надежности умя							1,4						
2. Разруше	ение	по ко	нтан	сту с	основ	ание	м (п.6	.1.2)					
2.1 Нормативное значение силы сопротивления анкера по контакту с основанием $N_{n,p}$ (кН):			l _										
в бетоне C20/25 без трещин*		9	ı	,5	9	12	16	12	20	-	-	-	-
в бетоне С20/25 с трещинами*			6		6	9	12	-	-	-	-	-	-
2.2 Коэффициент условий работы үүр		1	,2						1,0				
2.3 Коэффициент, учитывающий фактическую прочность бетона основания ψ_c : Бетон C20/25 Бетон C25/30 Бетон C30/37 Бетон C35/45 Бетон C40/50 Бетон C45/55 Бетон C50/60				60			1,0 1,1 1,22 1,34 1,41 1,48 1,55		1.2)				
3. Разрушение с	от вь	ікалі	ыван	ия ое	тона	осно	вания	(п. б.	.1.3)	ı		ı	1
3.1 Эффективная глубина анкеровки h_{ef} (мм)			12		40	46,4	54,9	41,6	58,6	67,1	49,3	66,3	91,8
3.2 Коэффициент условий работы умс			,2						1,0				
4. Разрушен	ие о	г рас	калы	вани	я осн	ован	ия (п.	6.1.4)	1			1
4.1 Критическое краевое расстояние при раскалывании $c_{cr,sp}$ (мм)		6	53		60	70	85	65	90	110	85	100	140
4.2 Критическое межосевое расстояние при раскалывании $s_{cr,sp}$ (мм)		1	26		120	140	170	130	180	220	170	200	280
4.3 Коэффициент условий работы у _{Nsp}		1	,2						1,0				

контакту с основанием допускается не выполнять – определяющими являются другие формы разрушения

Таблица 8.3 – Параметры для расчета прочности при сдвиге для анкеров HUS3

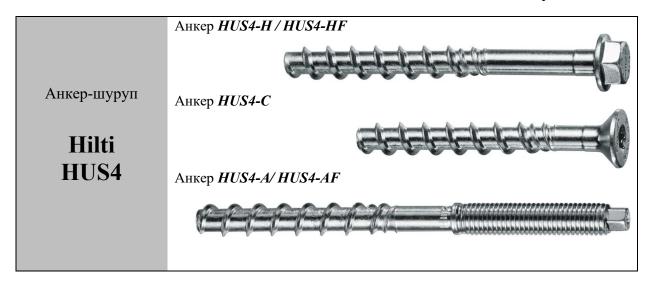

					HUS	53						
	6			8			10			14		
Тип исполнения анкера	-H, -A, -C -P	-PS, -PL	-H,	-HF,	-C	- H,	-HF,	-C	-Н,	-Н		
Номинальная глубина	55		50	60	70	55	75	85	65	85	115	
анкеровки h_{nom} (мм)					, ,	55	7.5	05	05	0.5	113	
	Разрушение	по ста	али (п	.6.2.1	.)							
1.1 Нормативное значение силы сопротивления анкера по стали без учета дополнительного момента $V_{n,s}$ (кН):	12,5		19	19	22	30	30	34	55	55	62	
1.2 Нормативное значение предельного момента для анкера по стали $M^0_{n,s}$ (H·м)	21			46		92						
1.3. Коэффициент условий групповой работы анкеров λ_s					0,8							
1.4 Коэффициент надежности γ_{Vs}	1,5											
2. Разрушение от вы	калывания б	етона	основ	вания	за ан	керо	м (п.6	.2.2)				
$2.1 { Коэффициент учета глубины анкеровки } k$	1,5		1,0	2	,0	1,0			2,0			
2.2 Коэффициент условий работы γ_{Vcp}					1,0							
3. Разрушени	от откалыв	ания к	грая о	снова	ания	(п. 6.2	.3)					
3.1 Приведенная глубина анкеровки при сдвиге l_f (мм)	42		40	46,4	54,9	41,6	58,6	67,1	49,3	66,3	91,8	
3.2 Номинальный диаметр анкера d_{nom} (мм)	6			8			10		12			
3.3 Коэффициент условий работы уус			_	•	1,0					•		

Таблица 8.4 – **Параметры для расчета деформативности при растяжении для** анкеров HUS3

					HUS	53					
Тип исполнения анкера		6		8			10			14	
тип исполнения анкера	-H, -A,	-P, -PS,		- H			<i>-H</i>			- H	
	-I, -C	-PL		-C			-C			-C	
Номинальная глубина анкеровки h_{nom} (мм)	:	55	50	60	70	55	75	85	65	85	115
1. Смещение анкеров от	растяги	вающих у	сили	й в бе	тоне	без т	рещи	н (п. ′	7.6)		
1.1. Контрольное значение силы на анкер в бетоне C20/25-C50/60 без трещин N_{cont} (кН)	3,6	3,0	6,6	8,9	11,8	8,7	14,8	20,5	12,9	20,1	32,8
1.2. Перемещения δ _{N0} (мм)	(),2	0,1	0,2	0,1	0,1	0,1	0,1	0,1	0,2	0,3
 Перемещения δ_№ (мм) 	(),3		0,3			0,2			0,5	
2. Смещение анкеров от	растягив	ающих ус	илий	в бет	гоне с	треп	цинам	ии (п.	7.6)		
2.1 Контрольное значение силы на анкер в бетоне C20/25-C50/60 с трещинами <i>N_{cont}</i> (кH)	2	2,4	4,3	5,7	7,6	5,7	9,5	13,2	8,3	13,0	21,2
2.2. Перемещения δ _{N0} (мм)	(),1	0,3	0,4	0,3	0,4	0,4	0,4	0,6	0,5	0,5
2.3. Перемещения $\delta_{N\infty}$ (мм)	(),6	0,7	0,7	0,6	0,4	0,4	0,5	0,9	1,2	1,0

Таблица 8.5 – Параметры для расчета деформативности при сдвиге для анкеров HUS3

	HUS3												
Тип исполнения анкера	6		8			10		трещин (п. 7.7) 21,4					
тип исполнения анкера	-H, -A, -I, -C,		- H			- H			- H				
	-P, -PS, -PL		-C			-C			-C				
Номинальная глубина анкеровки h_{nom} (мм)	55	50	60	70	55	75	85	65	85	115			
1. Смещение анкеров от сд	двигающих усилий в бетоне с трещинами и без трещин (п. 7.7)												
1.1. Контрольное значение силы на анкер в бетоне C20/25-C50/60 с трещинами и без трещин	6,0		8,1			13,3			21,4				
V_{cont} (кH)			1			ı	Г		1				
1.2. Перемещения δ_{V0} (мм)	1,9	2,5	3,4	2,9	3,8	3,7	3,2	3,6	3,2	2,4			
1.3. Перемещения $\delta_{V\infty}$ (мм)	2,8	3,7	5,1	4,4	5,7	5,5	4,9	5,4	6,9	3,5			

Допускаемые при расчете условия установки: основание бетон C20/25-C50/60 с трещинами и без трещин; ударное сверление.

Таблица 9.1 – Конструктивные требования к размещению анкеров HUS4

_							HU	US4						
Тип		8			10			12			14		1	6
исполнения анкера	-H	, -HF,	-C	-H, -	-H, -HF, -C, -A, - AF			-Н		-H, -	HF, -A	-H, -HF		
Номинальная глубина анкеровки <i>h_{nom}</i> (мм)	40	60	70	55	75	85	60	80	100	65	85	115	85	130
Эффективная глубина анкеровки h_{ef} (мм)	30,6	47,6	56,1	42,5	59,5	68	45,9	62,9	79,9	49,3	66,3	91,8	66,6	104,
Минимальная толщина основания h_{\min} (мм)	80	100	120	100	130	140	110	130	150	120	160	200	130	195
, ,			1. (Основа	ние с	грещи	нами и	і без тр	о ещин		•	•		
1.1 Минимальное краевое расстояние $c_{\min}(MM)$		35		40			50			60			65	
1.2 Минимальное межосевое расстояние s _{min} (мм)		35			40			50			60		9	0

Таблица 9.2 – Параметры для расчета прочности при растяжении для анкеров HUS4

							HU	US4						
Тип исполнения		8			10			12			14		1	16
анкера	-H	I, -HF,	-C	-H,	-HF, A, -A			-Н		-Н,	-HF, AF	-A, -	-Н,	-HF
Номинальная														
глубина	40	60	70	55	75	85	60	80	100	65	85	115	85	130
анкеровки h_{nom} (мм)			L											
	1		1. Pa	зруш	ение	по ста	ли (п.	6.1.1))	1			1	
1.1. Нормативное														
значение силы		36			55			79			101,5		10	7,7
сопротивления анкера		50						,,			101,0		10	. , , ,
по стали Nn,s (кН):														
1.2. Коэффициент								_						
надежности <i>ү</i> мs							1	,5						
• • • • • • • • • • • • • • • • • • • •	2	. Разру	ушени	е по і	конта	кту с	основа	нием	1 (п.6.1	1.2)				
2.1 Нормативное			, -											
значение силы														
сопротивления анкера														
по контакту с														
основанием $N_{n,p}$ (кН):														
в бетоне С20/25				1	I	1							I	1
без трещин*		_		13	22				_				22	46
в бетоне С20/25 с		Ī		l	l	l	Ī	l						
трещинами*	5,5			_			10			_			16	32
.														
2.2 Коэффициент		1,0		1,2						1,0				
условий работы γ_{Np}														
2.3 Коэффициент,														
учитывающий								0.5						
фактическую							$(f_{ck}/2)$	(0)0.5						
прочность бетона														
основания ψ_c :														
	3. Разј	рушен	ие от в	ыка.	пыва	ния бе	етона с	снов	ания (п. 6.1	3)			
3.1 Эффективная														
глубина анкеровки	30,6	47,6	56,1	42,5	59,5	68	45,9	62,9	79,9	49,3	66,3	91,8	66,6	104
h_{ef} (MM)														
3.2 Коэффициент		1.0		1.0						1.0				
условий работы <i>у</i> ус		1,0		1,2						1,0				
, ,,,,,	4.]	Разруг	пение	от ра	скал	ывани	я осно	вани	ія (п. 6	5.1.4)				
4.1 Критическое										<u> </u>				
краевое расстояние														
при раскалывании		$1,5h_{ef}$				1,6	$5h_{ef}$					$1,6h_{ef}$		
$C_{cr,sp}$ (мм)														
4.2 Критическое														
-														
межосевое		3 <i>h</i>				2 2	l h					3 2h		
расстояние при		$3h_{ef}$				3.3	h_{ef}					$3.2h_{ef}$		
раскалывании $S_{cr,sp}$														
(MM)										I				
4.3 Коэффициент условий работы γNsp		1,0		1,2						1,0				
				1 1	1					*				

Таблица 9.3 – Параметры для расчета прочности при сдвиге для анкеров HUS4

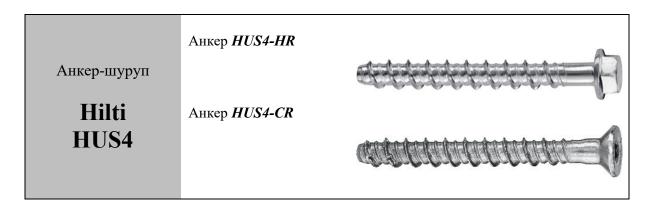

							Н	US4						
Тип исполнения		8			10			12			14		1	6
анкера	-Н,	-H, -HF, -С -H, -		-HF, -C AF	C, -A, -	-Н		-Н	, -HF, AF	-A, -	-Н,	-HF		
Номинальная глубина анкеровки <i>h_{nom}</i> (мм)	40	60	70	55	75	85	60	80	100	65	85	115	85	130
wittep e Biai whom (Min)		l	1. P	азру	шение	по ста	ли (п	1.6.2.1)	L	1		<u>I</u>	<u>I</u>	
1.1 Нормативное значение силы сопротивления анкера по стали без учета дополнительного момента $V_{n,s}$ (кН):	18,	8	21,9	2	28,8	32	3	8,9	44,9	55	6	2	65,1	73,1
1.2 Нормативное значение предельного момента для анкера по стали $M^0_{n,s}$ (H·м)		32			64	64 120 186 240					40			
1.3. Коэффициент условий групповой работы анкеров λ_s								0,8						
1.4 Коэффициент надежности γ_{Vs}								1,25						
	рушен	ие от	г выка	лыв	ания б	етона	основ	вания	за анк	ером	(п.6.2.	2)		
2.1 Коэффициент учета глубины анкеровки <i>k</i>	1,0	į	2,0	1,0	2	,0					2,0			
2.2 Коэффициент условий работы γ_{Vcp}								1,0						
	3. Pa	зруш	ение о	т оті	салыва	ания к	рая о	снова	ния (п	. 6.2.3	B)			
3.1 Приведенная глубина анкеровки при сдвиге l_f (мм)	40	60	70	55	75	85	60	80	100	65	85	115	85	130
3.2 Номинальный диаметр анкера d_{nom} (мм)		8		10 12 14 16					6					
3.3 Коэффициент условий работы γ_{Vc}	1,0													

Таблица 9.4 – Параметры для расчета деформативности при растяжении для анкеров HUS4

							Н	US4						
Тип исполнения		8			10			12			14		1	6
анкера	-H,	, -HF,	-C	-H, -HF, -C, -A, - AF -H		-H, -HF, -A, - AF		-H, -HF						
Номинальная глубина анкеровки h_{nom} (мм)	40	60	70	55	75	85	60	80	100	65	85	115	85	130
1. Смеще	ние а	нкеро	в от р	астяг	иваюц	цих ус	илиі	й в бет	оне бе	з тре	щин (п	ı. 7.6)		
1.1 Контрольное значение силы на анкер в бетоне C20/25 – C50/60 <i>N_{cont}</i> (кН):	3,7	7,1	9,1	5,2	10,5	12,2	6,8	10,8	15,5	7,5	11,7	19,1	11,5	22,9
1.2 Перемещения $\delta_{N0}({ m MM})$	0,1	0,2	0,2	0,1	0,3	0,3	0,2	0,3	0,4	0,2	0,3	0,5	0,4	0,3
1.3. Перемещения $\delta_{N\infty}$ (мм)	0,3	0,4	0,4	0,7	0,7	0,9	0,9	0,9	1,2	1,3	1,3	1,5	1,3	1,4
2. Смеще	ние ан	керов	от ра	стяги	вающ	их усі	илий	в бето	не с тр	ещи	нами (п. 7.6)		
1.1 Контрольное значение силы на анкер в бетоне $C20/25 - C50/60$ N_{cont} (кН):	2,6	5,4	6,9	3,8	7,5	8,6	5,1	8,2	11,7	5,7	8,6	14,4	8,7	16,7
1.2 Перемещения δ_{N0} (мм)	0,1	0,3	0,4	0,2	0,4	0,4	0,3	0,4	0,6	0,3	0,4	0,7	0,1	0,4
1.3. Перемещения $\delta_{N\infty}(\text{мм})$	0,3	0,4	0,4	0,7	0,7	0,9	0,9	0,9	1,2	1,3	1,3	1,5	1,3	1,4

Таблица 9.5 – **Параметры для расчета деформативности при сдвиге для анкеров HUS4**

		HUS4												
Тип исполнения		8			10			12			14		1	6
анкера	-Н	, -HF,	-C	-H, -I	HF, -C, AF	-A, -		-H		-H	I, -HF, AF	-A, -	-H, ·	-HF
Номинальная														
глубина	40	60	70	55	75	85	60	80	100	65	85	115	85	130
анкеровки h_{nom} (мм)														
1. Смещение анкеров от растягивающих усилий в бетоне с трещинами без трещин (п. 7.7)														
1.1 Контрольное														
значение силы на	10.7	10.7	12.5	16.5	16,5	18,3	22, 2	22,2	25,7	31,	35,4	35.4	37.2	41.8
анкер в бетоне С20/25	10,7	10,7	12,3	10,5	10,5	10,5	2	22,2	23,7	4	33,4	33,4	31,2	41,6
$- \text{C50/60} N_{cont} (\text{kH})$:														
1.2 Перемещения	1.3	1.1	0.9	1,4	1.3	1.0	1,6	1,6	0.9	5,3	5.3	4.0	2,3	1,8
$\delta_{N0}(\text{MM})$	1,5	1,1	0,9	1,4	1,3	1,0	1,0	1,0	0,9	3,3	3,3	4,0	2,3	1,8
1.3. Перемещения $\delta_{N\infty}$ (мм)	2,0	1,7	1,4	2,1	2,0	1,5	2,3	2,4	1,4	7,9	7,9	6,0	3,5	2,7

Допускаемые при расчете условия установки: основание бетон С20/25-С50/60 с трещинами и без трещин; ударное сверление.

Таблица 10.1 – Конструктивные требования к размещению анкеров HUS4

HUS4	HUS4-HR / HUS4-CR									
	6	8		10		14				
Тип исполнения анкера	-HR, -CR	-HR,	-CR	-HR, -CR		-HR				
Номинальная глубина анкеровки h_{nom} (мм)	55	60	80	70	90	70	110			
Эффективная глубина анкеровки $h_{e\!f}$ (мм)	45	47	64	54	71	52	86			
Минимальная толщина основания $h_{\min}(MM)$	100	100	120	120	140	140	160			
1. Бетонное осно	ование с	трещи	нами							
1.1 Минимальное краевое расстояние $c_{\min}(\text{мм})$	35	45	60	50	50	60	60			
1.2 Минимальное межосевое расстояние $s_{min}(mm)$	35	45	60	50	50	60	60			
2. Бетонное осн	2. Бетонное основание без трещин									
2.1 Минимальное краевое расстояние $c_{\min}(\text{мм})$	35	45	60	50	50	60	60			
2.2 Минимальное межосевое расстояние $s_{min}(MM)$	35	45	60	50	50	60	60			

Таблица 10.2 – Параметры для расчета прочности при растяжении для анкеров HUS4

HUS4	HUS4-HR / HUS4-CR						
	6	9	8	10		1	4
Тип исполнения анкера	-HR, -CR	-HR,	-HR, -CR		-HR, -CR		HR
Номинальная глубина анкеровки h_{nom} (мм)	55 60 80		70	90	70	110	
1. Разрушени	е по стал	ти (п.6.1	l.1)				
1.1 Нормативное значение силы сопротивления анкера по стали $N_{n,s}$ (кН):	24,0	24,0 34,0		52,6		102	
1.2 Коэффициент надежности γ_{Ns}				1,4			
2. Разрушение по конт	акту с о	сновані	ием (п.6	.1.2)			
2.1 Нормативное значение силы сопротивления анкера по контакту с основанием $N_{n,p}$ (кН)*:							
в бетоне С20/25 с трещинами	5,0	8,5	15	12	16	12	25
в бетоне С20/25 без трещин	9,0	12	16	16	25	-	-
2.2 Коэффициент условий работы γ_{Np}	1,4 1,0 1,2		1,2	1,2 1,0		,2	

Окончание таблицы 10.2

HUS4		HUS4-HR / HUS4-CR							
	6	8	3	10		1	4		
Тип исполнения анкера	-HR, -CR	-HR, -CR		-HR, -CR		-HR			
Номинальная глубина анкеровки h_{nom} (мм)	55 60 80 70 90 70 1								
2.3 Коэффициент, учитывающий фактическую прочность бетона основания ψ_c : $(f_{ck}/20)^{0,5}$									
3. Разрушение от выкалывания бетона основания (п. 6.1.3)									
3.1 Коэффициент условий работы умс	1,4	1,0	1,2	1,2	1,0	1	,2		
4. Разрушение от раска	лывания	и основа	ния (п.	6.1.4)					
4.1 Критическое краевое расстояние при раскалывании $c_{cr,sp}$ (мм)	1,5 <i>h_{ef}</i>	1,5	h_{ef}	1,8	h_{ef}	1,8	h_{ef}		
4.2 Критическое межосевое расстояние при раскалывании $s_{cr,sp}$ (мм)	3 h _{ef}	3 /	h_{ef}	3,6	$h_{e\!f}$	3,6	h_{ef}		
4.3 Коэффициент условий работы умар 1,4 1,0 1,2 1,2 1,0 1,2									
*Для анкеров HUS4 с неустановленной величиной силы сопротивления $N_{n,p}$ проверку прочности по контакту с основанием допускается не выполнять — определяющими являются другие формы разрушения									

Таблица 10.3 – Параметры для расчета прочности при сдвиге для анкеров HUS4

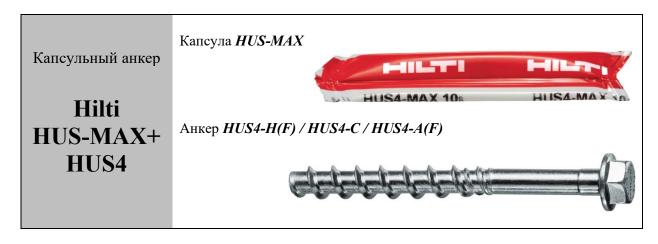

HUS4	HUS4-HR / HUS4-CR						
	6		8	1	10	1	4
Тип исполнения анкера	-HR, -CR	-HR, -CR		-HR, -CR		- <i>I</i> -	HR
Номинальная глубина анкеровки h_{nom} (мм)	55	5 60 80		70	90	70	110
1. Разрушени	е по стал	и (п.6.	2.1)				
1.1 Нормативное значение силы сопротивления анкера по стали без учета дополнительного момента $V_{n,s}$ (кН):			33	55	77		
1.2 Нормативное значение предельного момента для анкера по стали $M^0_{n,s}$ (H·м)	19	19 36		66		19	93
1.3. Коэффициент условий групповой работы анкеров λ_s				1,0			
1.4 Коэффициент надежности γ_{Vs}				1,5			
2. Разрушение от выкалывания	бетона о	снован	ия за ань	сером (п.6.2.2)		
2.1 Коэффициент учета глубины анкеровки k	1,5			2	,0		
2.2 Коэффициент условий работы үүср				1,0			
3. Разрушение от откалын	зания кр	ая осн	ования (і	1. 6.2.3)			
3.1 Приведенная глубина анкеровки при сдвиге l_f (мм)	45 47 64		54	71	52	86	
3.2 Наружный диаметр анкера <i>d</i> _{nom}	6 8 10 14				4		
3.3 Коэффициент условий работы γ_{Vc}	1,0						

Таблица 10.4 – Параметры для расчета деформативности при растяжении для анкеров HUS4

HUS4	HUS4-HR / HUS4-CR								
	6 8 -HR, -CR -HR, -CR -H		10		14				
Тип исполнения анкера			-HR,	-HR, -CR		HR			
Номинальная глубина анкеровки h_{nom} (мм)	55	60	80	70	90	70	110		
1. Смещение анкеров от растягивающих усилий в бетоне без трещин (п. 7.6)									
1.1 Контрольное значение силы на анкер в бетоне C20/25-C50/60 без трещин N_{cont} (кН)	3,1	4,8	6,3	6,3	9,9	7,5	16		
1.2. Перемещения δ _{N0} (мм)	0,8	0,7	1,6	0,3	1,3	0,7	1,0		
1.3. Перемещения $\delta_{N∞}$ (мм)	0,8	0,7	1,6	0,3	1,3	0,7	1,0		
2. Смещение анкеров от раст	ягивающ	их усил	ий в бет	оне с тре	ещинами	п. 7.6)			
2.1 Контрольное значение силы на анкер в бетоне C20/25-C50/60 с трещинами <i>N_{cont}</i> (кH)	1,7	2,4	4,8	3,6	6,3	4,8	9,9		
2.2. Перемещения δ _{N0} (мм)	0,4	0,5	0,7	0,3	0,6	0,9	1,4		
2.3. Перемещения $\delta_{N\infty}$ (мм)	0,5	0,7	1,1	0,6	1,1	1,1	1,4		

Таблица 10.5 – Параметры для расчета деформативности при сдвиге для анкеров HUS4

HUS4		HUS4-HR / HUS4-CR						
	6	8		10		14		
Тип исполнения анкера	-HR, -CR	-HR,	, -CR	-HR,	-CR	-1	HR	
Номинальная глубина анкеровки h_{nom} (мм)	55	60	80	70	90	70	110	
1. Смещение анкеров от сдвиган	ощих усили	ій в бето	оне с тр	ещинами	и без тр	ещин (п.	7.7)	
1.1. Контрольное значение силы на анкер в бетоне C20/25-C50/60 с трещинами и без трещин V _{cont} (кН)	7,8	11,0	12,4	13,6	15,7	12,9	27,3	
1.2. Перемещения δ _{V0} (мм)	0,4	2,0	2,3	1,1	1,7	3,5	3,9	
1.3. Перемещения $\delta_{V_{\infty}}$ (мм)	0,5	2,4	2,9	1,5	2,4	3,9	4,3	

Допускаемые при расчете условия установки: основание бетон C20/25-C50/60 с трещинами и без трещин; ударное сверление.

Таблица 11.1 – Предусмотренные температурные режимы для капсульного анкера HUS-MAX

	Допустимый	Максимальная	Максимальная
Температурный режим	диапазон	длительная	кратковременная
температурный режим	изменения	температура	температура при
	температур, °С	эксплуатации, °С	эксплуатации, °С
Температурный режим I	-40 +120	не более 72	+120

Таблица 11.2 – Конструктивные требования к размещению анкеров HUS-MAX+HUS4

		HUS4	1	
Тип исполнения анкера	10	12	14	16
тип пополнения анкера	-H(F), -C, -A(F)	-Н	-H(F), -A(F)	-H(F)
Номинальная глубина анкеровки h_{nom} (мм)	85	100	115	130
Эффективная глубина анкеровки $h_{e\!f}$ (мм)	85	100	115	130
Минимальная толщина основания h_{\min} (мм)	140	160	200	200
1. Основа	ние с трещинами	и без трещин		
1.1 Минимальное краевое расстояние c_{\min} (мм)	40	50	60	65
1.2 Минимальное межосевое расстояние s_{min} (мм)	40	50	60	90

Таблица 11.3 — **Параметры для расчета прочности при растяжении для анкеров HUS-MAX+HUS4**

		HU	US4						
Тип исполнения анкера	10	12	14	16					
	-H(F), -C, -A(F)	-Н	-H(F), $-A(F)$	-H(F)					
Номинальная глубина	85	100	115	130					
анкеровки h_{nom} (мм)			113	150					
	ние по стали (п.6.	1.1)	T	T					
1.1. Нормативное значение силы сопротивления анкера по стали <i>Nn</i> , <i>s</i> (кH):	M 55 79 101,5 10								
1.2. Коэффициент надежности умя	1,5								
2. Разрушение от выкалі	ывания бетона ос	нования (п	. 6.1.3)						
2.1 Эффективная глубина анкеровки h_{ef} (мм)	85 100 115 130								
2.2 Коэффициент условий работы <i>у</i> _{Vc} 1,0									
3. Разрушение от рас	калывания основ	ания (п. 6.1	1.4)						
3.1 Критическое краевое расстояние при	$1,6h_{ef}$	1,7h _{ef}	1,85 <i>h_{ef}</i>	$1,95h_{ef}$					
раскалывании $c_{cr,sp}$ (мм)	_,ej	_,ej	=,==:e;	_,ej					
3.2 Критическое межосевое расстояние при раскалывании $s_{cr,sp}$ (мм)	$3,2h_{ef}$	$3,4h_{ef}$	$3,7h_{ef}$	$3,9h_{ef}$					
3.3 Коэффициент условий работы γNsp		1	,0						
4. Комбинированное разрушение по кон	такту и выкалыв	занию бетог	на основания (п. 6.1.5)					
4.1 Нормативное значение силы сопротивления									
анкера по контакту с основанием $N_{n,p}$ (кН)									
в бетоне С20/25 без трещин	38	55	70	80					
в бетоне С20/25 с трещинами	24 36 42								
4.2 Коэффициент, учитывающий фактическую	ую $(f_{ck}/20)^{0.5}$								
прочность бетона основания φ_c	GCK/ 20)								
4.3 Коэффициент условий работы γ_{Np}	1,0								

Таблица 11.4 — **Параметры для расчета прочности при сдвиге для анкеров HUS- MAX+HUS4**

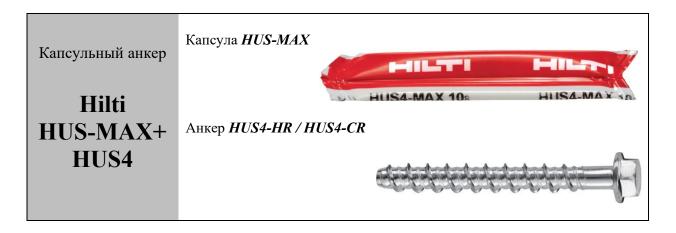

		HU	U S4		
Тип исполнения анкера	10	12	14	16	
	-H(F), $-C$, $-A(F)$	-Н	-H(F), $-A(F)$	-H(F)	
Номинальная глубина	85	100	115	130	
анкеровки h_{nom} (мм)			113	130	
1. Разруше	ние по стали (п.6.	2.1)			
1.1 Нормативное значение силы сопротивления анкера по стали Vn,s (кН):	32	44,9	62	73,1	
1.2 Нормативное значение предельного момента для анкера по стали $M_{n,s}^0$ (Нм)	64	120	186	240	
1.3 Коэффициент условий групповой работы анкеров λ_s	0,8				
1.4 Коэффициент надежности γ_{Vs}		1,	25		
2. Разрушение от выкали	ывания бетона ос	нования (п	. 6.2.2)		
2.1 Коэффициент учета глубины анкеровки к		2	,0		
2.2 Коэффициент условий работы γ_{Vcp}		1	,0		
3. Разрушение от расп	калывания основ	ания (п. 6.2	2.3)		
3.1 Приведенная глубина анкеровки при сдвиге l_f (мм)	85	100	115	130	
3.2 Номинальный диаметр анкера d_{nom} (мм)	10	12	14	16	
3.3 Коэффициент условий работы уус	1,0				

Таблица 11.5 — **Параметры для расчета деформативности при растяжении для анкеров HUS-MAX+HUS4**

		HU	US4	
Тип исполнения анкера	10	12	14	16
	-H(F), $-C$, $-A(F)$	<i>-H</i>	-H(F), $-A(F)$	-H(F)
Номинальная глубина	85	100	115	130
анкеровки h_{nom} (мм)	03	100	113	150
1. Смещение анкеров от растягивающих усилий в бетоне без трещин (п. 7.				
1.1 Контрольное значение силы на анкер в	17,1	23,8	31	38,1
бетоне C20/25 N _{cont} (кН):	17,1	23,6	31	36,1
1.2 Перемещения δ_{N0} (мм)	0,3	0,4	0,5	0,6
1.3 Перемещения $\delta_{N\infty}$	0,6	0,6	0,8	0,8
2. Смещение анкеров от растягив	ающих усилий в (бетоне с тро	ещинами (п. 7.	6)
2.1 Контрольное значение силы на анкер в	10.5	16.2	10.1	26.2
бетоне C20/25 <i>N_{cont}</i> (кН):	10,5	10,2	18,1	26,2
2.2 Перемещения δ_{N0} (мм)	0,3	0,5	0,6	0,8
2.3 Перемещения $\delta_{N\infty}$ (мм)	0,6	0,6	0,8	0,8

Таблица 11.6 – Параметры для расчета деформативности при сдвиге для анкеров HUS-MAX+HUS4

	HUS4					
Тип исполнения анкера	10	14	14	16		
	-H(F), $-C$, $-A(F)$	-HR	-H(F), $-A(F)$	-H(F)		
Номинальная глубина анкеровки h_{nom} (мм)	85	100	115	130		
1. Смещение анкеров от сдвигающих у	силий в бетоне с т	рещинами	и без трещин	(п. 7.7)		
1.1 Контрольное значение силы на анкер в бетоне C20/25 V_{cont} (кН):	18,3	25,7	35,4	41,8		
1.2 Перемещения δ_{V0} (мм)	1,0	0,9	4,0	1,8		
1.3 Перемещения $\delta_{V\infty}$	1,5	1,4	6,0	2,7		

Допускаемые при расчете условия установки: основание бетон С20/25-С50/60 с трещинами и без трещин; ударное сверление.

Таблица 12.1 – **Предусмотренные температурные режимы для капсульного анкера HUS- MAX**

	Допустимый	Максимальная	Максимальная
Температурный режим	диапазон	длительная	кратковременная
температурный режим	изменения	температура	температура при
	температур, °С	эксплуатации, °С	эксплуатации, °С
Температурный режим I	-40 +120	не более 72	+120

Таблица 12.2 – Конструктивные требования к размещению анкеров HUS-MAX+HUS4

	HUS4			
Тип исполнения анкера	10	14		
тип непознения шкера	-HR, -CR	-Н		
Номинальная глубина анкеровки h_{nom} (мм)	90	110		
Эффективная глубина анкеровки $h_{e\!f}$ (мм)	90	110		
Минимальная толщина основания h_{\min} (мм)	140	160		
1. Основание с трещинами и без трещин	I			
1.1 Минимальное краевое расстояние $c_{\min}(\text{мм})$	50	60		
1.2 Минимальное межосевое расстояние $s_{\min}(\text{мм})$	50	60		

Таблица 12.3 — **Параметры для расчета прочности при растяжении для анкеров HUS-MAX+HUS4**

	HUS4			
Тип исполнения анкера	10	14		
	-HR, -CR	-HR		
Номинальная глубина анкеровки h_{nom} (мм)	90	110		
1. Разрушение по стали (п.6.1.1)				
1.1. Нормативное значение силы сопротивления анкера по стали <i>Nn,s</i> (кH):	52,6	102,2		
1.2. Коэффициент надежности _{Мs}	1	,4		
2. Разрушение от выкалывания бетона основа	ния (п. 6.1.3)			
2.1 Эффективная глубина анкеровки h_{ef} (мм)	90	110		
2.2 Коэффициент условий работы γ_{Nc}	Коэффициент условий работы γ_{Nc} 1,0			
3. Разрушение от раскалывания основания	(п. 6.1.4)			
3.1 Критическое краевое расстояние при раскалывании $c_{cr,sp}$ (мм)	1,95 <i>h_{ef}</i>	1,85h _{ef}		
3.2 Критическое межосевое расстояние при раскалывании $s_{cr,sp}$ (мм)	3,9h _{ef}	$3,7h_{ef}$		
3.3 Коэффициент условий работы γ_{Nsp}	1	,0		
4. Комбинированное разрушение по контакту и выкалыванию	о бетона основані	ия (п. 6.1.5)		
4.1 Нормативное значение силы сопротивления анкера по контакту с				
основанием $N_{n,p}$ (кН)				
в бетоне С20/25 без трещин	40	65		
в бетоне С20/25 с трещинами	24	40		
4.2 Коэффициент, учитывающий фактическую прочность бетона основания $\varphi_{\rm c}$	$(f_{ck}/20)^{0.5}$			
4.3 Коэффициент условий работы γ_{Np}	1,0			

Таблица 12.4 — **Параметры для расчета прочности при сдвиге для анкеров HUS- MAX+HUS4**

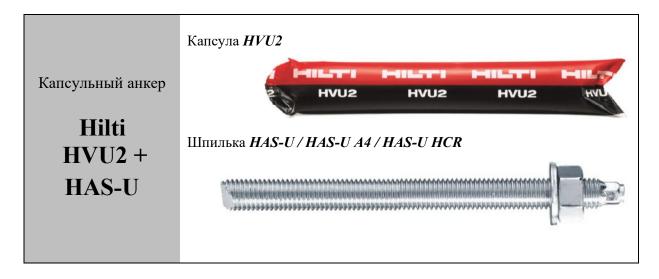

	HU	JS4		
Тип исполнения анкера	10	14		
	-HR, -CR	-HR		
Номинальная глубина анкеровки h_{nom} (мм)	90	110		
1. Разрушение по стали (п.6.2.1)				
1.1 Нормативное значение силы сопротивления анкера по стали Vn , s (кН):	33	77		
1.2 Нормативное значение предельного момента для анкера по стали $M_{n,s}^0$ (Нм)	66	193		
1.3 Коэффициент условий групповой работы анкеров λ_s	1,0			
1.4 Коэффициент надежности γ_{Vs}	1,5			
2. Разрушение от выкалывания бетона основа	ния (п. 6.2.2)			
2.1 Коэффициент учета глубины анкеровки k	2	0,0		
2.2 Коэффициент условий работы γ_{Vcp}	1,0			
3. Разрушение от раскалывания основания	(п. 6.2.3)			
3.1 Приведенная глубина анкеровки при сдвиге l_f (мм)	90	110		
3.2 Номинальный диаметр анкера d_{nom} (мм)	10	14		
3.3 Коэффициент условий работы γ_{Vc}	1	0,		

Таблица 12.5 – **Параметры для расчета деформативности при растяжении для анкеров HUS-MAX+HUS4**

	HUS4			
Тип исполнения анкера	10	14		
	-HR, -CR	-HR		
Номинальная глубина	90	110		
анкеровки h_{nom} (мм)	90	110		
1. Смещение анкеров от растягивающих усилий в бетоне бе	з трещин (п. 7.6)		
1.1 Контрольное значение силы на анкер в бетоне $C20/25 N_{cont}$ (кН):	19	31		
1.2 Перемещения δ_{N0} (мм)	0,3	0,5		
1.3 Перемещения $\delta_{N\infty}$	0,5	0,5		
2. Смещение анкеров от растягивающих усилий в бетоне с т	рещинами (п. 7.	6)		
2.1 Контрольное значение силы на анкер в бетоне $C20/25 N_{cont}$ (кН):	11,4	19		
\sim 2.2 Перемещения δ_{N0} (мм)	0,5	0,8		
2.3 Перемещения $\delta_{N\infty}$ (мм)	0,5	0,8		

Таблица 12.6 — **Параметры для расчета деформативности при сдвиге для анкеров HUS-MAX+HUS4**

	HUS4			
Тип исполнения анкера	10	14		
	-HR, -CR	-HR		
Номинальная глубина анкеровки h_{nom} (мм)	90	110		
1. Смещение анкеров от сдвигающих усилий в бетоне с трещинам	и и без трещин	(п. 7.7)		
1.1 Контрольное значение силы на анкер в бетоне $C20/25 V_{cont}$ (кН):	15,7	27,3		
1.2 Перемещения δ_{V0} (мм)	1,7	3,9		
1.3 Перемещения $\delta_{V^{\infty}}$	2,4	4,3		

Допускаемые при расчете условия установки: основание бетон C20/25-C50/60 с трещинами и без трещин; ударное сверление, алмазное сверление (M10-M30).

Таблица 13.1 – Предусмотренные температурные режимы для капсульного анкера HVU2

	Допустимый	Максимальная	Максимальная
Температурный режим	диапазон	длительная	кратковременная
температурный режим	изменения	температура	температура при
	температур, °С	эксплуатации, °С	эксплуатации, °С
Температурный режим I	-43 +40	не более 24	+40
Температурный режим II	-43 +80	не более 50	+80
Температурный режим III	-43+120	не более 72	+120

Таблица 13.2 – Конструктивные требования к размещению анкеров HVU2 + HAS-U

HVU2 + HAS-U		HAS-U/HAS-U A4/HAS-U HCR						
HV U2 + HAS-U	M8	M10	M12	M16	M20	M24	M27	M30
Эффективная глубина анкеровки $h_{\mathscr{C}}$ (мм)	80	90	110	125	170	210	240	270
Диаметр отверстия для установки анкера $d\theta$ (мм)	10	12	14	18	22	28	30	35
Минимальная толщина основания h_{min} (мм)	110	120	140	160	220	270	300	340
1. Бето	нное ост	нование	без тре	щин				
1.1 Минимальное краевое расстояние c_{min} (мм)	40	45	45	50	55	60	75	80
1.2 Минимальное межосевое расстояние $s_{min}(MM)$	40	50	60	75	90	115	120	140

Таблица 13.3 – Параметры для расчета прочности при растяжении для капсульных анкеров HVU2 + HAS-U

******	HAS-U/HAS-U A4/HAS-U HCR							
HVU2 + HAS-U	M8	M10	M12	M16	M20	M24	M27	M30
1. Pa3	рушени	е по ста	ли (п.6.	1.1)				
1.1. Нормативное значение силы								
сопротивления анкера по стали $N_{n,s}$ (кH):								
HAS-U 5.8	18,3	29,0	42,2	78,5	122,5	176,5	229,5	280,5
HAS-U 8.8	29,3	46,4	67,4	125,6	196,0	282,4	367,2	448,8
HAS-U A4	25,6	40,6	59,0	109,9	171,5	247,1	229,5	280,5
HAS-U HCR	29,3	46,4	67,4	125,6	196,0	247,1	321,3	392,7

Окончание таблицы 13.3

Окончание таблицы 13.3		Н	AS-U/	HAS-U	A4/HA	IS-U H	CR	
HVU2 + HAS-U	M8	M10	M12	M16	M20	M24	M27	M30
1.2. Коэффициент надежности <i>у</i> у _s	3.20							3.200
HAS-U 5.8			1	,5			[_
HAS-U 8.8			•		,5		I	
HAS-U A4			1	,87	,5		2.	86
HAS-U HCR			1,5	,0 /		2,1		-
2. Разрушение от в	ыкалы	вания бе		нования	п.6.1.3		ı	
2.1 Эффективная глубина анкеровки	80	90	110	125	170	210	240	270
hef (MM)	80	90	110	123	170	210	240	270
2.2 Коэффициент условий работы умс					,0			
3. Разрушение о	т раска	лывани	я основ	ания (п.	6.1.4)			
3.1 Критическое краевое расстояние при								
раскалывании ссг, sp (мм)								
$h/h_{ef} \ge 2.0$				1,0	<i>hef</i>			
$1,3 < h/h_{ef} < 2,0$				4,6 <i>hef</i>	-1,8 h			
$h/h_{ef} \leq 1,3$				2,20	6 hef			
3.2 Критическое межосевое расстояние				2.0	,			
при раскалывании scr,sp (мм)				2 0	Ccr,sp			
3.3 Коэффициент условий работы үмэр				1	,0			
4. Комбинированное разрушение п	о конта	акту и ві	ыкалыв	анию бо	етона ос	нования	я (п.6.1.	5)
4.1 Номинальный диаметр	8	10	12	16	20	24	27	30
анкера d_{nom} (мм)	· ·	10	12	10	20	21	2,	30
4.2 Нормативное сцепление клеевого								
анкера с бетоном С20/25				по таб	бл. 13.4			
без трещин $\tau_{n,urc}$ (H/мм ²)								
4.3 Коэффициент, учитывающий								
фактическую прочность бетона								
основания ψ_c								
Бетон без трещин:								
Бетон С20/25					00			
Бетон С25/30				,	04			
Бетон С30/37				,	.08			
Бетон С35/45				,	.13			
Бетон С40/50					.15			
Бетон С45/55					17			
Бетон С50/60				1,	20			
Бетон с трещинами при ударном								
сверлении и ударном сверлении								
бурами TE-CD, TE-YD:								
Бетон С20/25					00			
Бетон С25/30					.02			
Бетон С30/37					.03			
Бетон С35/45					06			
Бетон С40/50					07			
Бетон С45/55	1,08							
Бетон С50/60				1,	.10			
Бетон с трещинами при алмазном					0			
сверлении: Бетон C20/25-C50/60				1	,0			
					0			
4.4 Коэффициент условий работы умр				1	,0			

Таблица 13.4 - Нормативное сцепление τ_n капсульного анкера HVU2

HVII2 + H45 II	HAS-U/HAS-U A4/HAS-U HCR									
HVU2 + HAS-U	M8	M10	M12	M16	M20	M24	M27	M30		
1.1 Нормативное сцепление клеевого										
анкера с бетоном С20/25 без трещин при				HV	T/2					
выполнении отверстий ударным				117	02					
сверлением $\tau_{n,urc}$ (H/мм ²)		1								
Температурный режим I (40/24 °C)	12,0				16,0					
Температурный режим II (80/50 °C)	9,5									
Температурный режим III (120/72 °C)	6,0	6,0 7,5								
1.2 Нормативное сцепление клеевого										
анкера с бетоном С20/25 без трещин при	TH/I/O									
выполнении отверстий ударным				HV	U2					
сверлением бурами ТЕ-CD, ТЕ-YD,										
$\tau_{n,urc}$ (H/MM ²)					1.					
Температурный режим I (40/24 °C)						5,0				
Температурный режим II (80/50 °C) Температурный режим III (120/72 °C)	-	-				5,0				
	-	-			- 7	,5				
1.3 Нормативное сцепление клеевого										
анкера с бетоном C20/25 без трещин при выполнении отверстий алмазным	HVU2									
сверлением т _{п,игс} (H/мм ²)										
Температурный режим I (40/24 °C)	_				14,0					
Температурный режим II (80/50 °C)	_				12,0					
Температурный режим III (120/72 °C)	_				6,5					
1.4 Нормативное сцепление клеевого					0,5					
анкера с бетоном С20/25 с трещинами										
при выполнении отверстий ударным				HV	'U2					
сверлением $\tau_{n,rc}$ (H/мм ²)										
Температурный режим I (40/24 °C)	5,0				8,5					
Температурный режим II (80/50 °C)	4,0				6,5					
Температурный режим III (120/72 °C)	2,5				4,0					
1.5 Нормативное сцепление клеевого										
анкера с бетоном С20/25 с трещинами										
при выполнении отверстий ударным				HV	U2					
сверлением бурами TE-CD, TE-YD,										
$\tau_{n,rc} (H/MM^2)$		•								
Температурный режим I (40/24 °C)	-	-			8	,5				
Температурный режим II (80/50 °C)	-	-			6	,5				
Температурный режим III (120/72 °C)	-	- 4,0								
1.6 Нормативное сцепление клеевого										
анкера с бетоном С20/25 с трещинами	HVU2									
при выполнении отверстий алмазным	, 52									
сверлением $\tau_{n,rc}$ (H/мм ²)										
Температурный режим I (40/24 °C)	-				7,0					
Температурный режим II (80/50 °C)	-	6,0								
Температурный режим III (120/72 °C)	-	- 3,5								

Таблица 13.5 – **Параметры для расчета прочности при сдвиге для анкеров HVU2 + HAS-U**

HIZE LIAC II		H	AS-U/I	HAS-U	A4/H A	IS-U H	CR	
HVU2 + HAS-U	M8	M10	M12	M16	M20	M24	M27	M30
Эффективная глубина анкеровки het (мм)	80	90	110	125	170	210	240	270
1. Pa3	рушени	е по ста	ли (п.6.2	2.1)		•		
1.1 Нормативное значение силы								
сопротивления анкера по стали без учета								
дополнительного момента $V_{n,s}$ (кH):								
HAS-U 5.8	9,2	14,5	21,1	39,3	61,3	88,3	114,8	140,3
HAS-U 8.8	14,6	23,2	33,7	62,8	98,0	141,2	183,6	224,4
HAS-U A4	12,8	20,3	29,5	55,0	85,8	123,6	114,8	140,3
HAS-U HCR	14,6	23,2	33,7	62,8	98,0	123,6	160,7	196,4
1.2 Нормативное значение предельного								
момента для анкера по стали $M_{\theta}(\mathbf{H} \cdot \mathbf{m})$:								
HAS-U 5.8	18,7	37,4	65,4	166,2	324,6	561,0	832,2	1124,4
HAS-U 8.8	30,0	59,8	104,6	265,9	519,4	897,6	1331,5	1799,0
HAS-U A4	26,2	52,3	91,6	232,7	454,4	785,4	832,2	1124,4
HAS-U HCR	30,0	59,8	104,6	265,9	519,4	785,4	1165,1	1574,2
1.3 Коэффициент условий групповой					0	•		
работы анкеров λ_s				1	,0			
1.4. Коэффициент надежности уvs								
HAS-U 5.8			1,	25				-
HAS-U 8.8				1,	25		•'	
HAS-U A4			1	,56			2	,38
HAS-U HCR			1,5			2.1		-
2. Разрушение от выкаль	івания	бетона с	снован	ия за ан	кером (п.6.2.2)		
2.1 Коэффициент учета глубины				2	,0			
анкеровки <i>k</i>					,0			
2.2 Коэффициент условий работы ууср					,0			
3. Разрушение от о	ткалы	вания кј	рая осно	вания (п. 6.2.3)			
3.1 Приведенная глубина анкеровки при сдвиге <i>lf</i> (мм)	80	90	110	125	170	210	240	270
3.2 Номинальный диаметр анкера <i>dnom</i> (мм)	8	10	12	16	20	24	27	30
3.3 Коэффициент условий работы ус				1,	0			

Таблица 13.6 – Параметры для расчета деформативности при растяжении для анкеров HVU2 + HAS-U

HIVIO I HAC II		HA	S-U/H	AS-U A	4 / HAS-	-U HCR			
HVU2 + HAS-U	M8	M10	M12	M16	M20	M24	<i>M27</i>	<i>M30</i>	
1. Смещение анкеров от рас	гягиваю	щих уси	лий в бе	етоне без	трещин	и (п. 7.6)			
Температурные режимы I, II, III									
1.1. Контрольное значение силы на анкер в бетоне C20/25-C50/60 без трещин (кН)	10								
1.2. Перемещения б _{N0} (мм)	0,06						0,	0,15	
1.3. Перемещения $\delta_{N∞}$ (мм)			0,	10			0,3	30	
2. Смещение анкеров от растягивающих	х усилий	в бетон	е с треш	инами (п. 7.6)				
Температурные режимы I, II, III									
2.1. Контрольное значение силы на анкер в бетоне C20/25-C50/60 с трещинами (кН)	10								
2.2. Перемещения б _{N0} (мм)			0,	10			0,	15	
2.3. Перемещения δ № (мм)	0,14 0,30								

Таблица 13.7 – Параметры для расчета деформативности при сдвиге для анкеров HVU2 + HAS-U

HVU2 + HAS-U	HAS-U/HAS-U A4/HAS-U HCR									
HV U2 + HAS-U	M8	M10	M12	M16	M20	M24	M27	M30		
1. Смещение анкеров от сдвигающих усилий в бетоне с трещинами и без трещин (п. 7.7)										
1.1 Коэффициент жесткости анкера <i>Сv</i> ₀ (кН/мм)	16,7	16,7	20,0	25,0	25,0		33,3			
1.2 Коэффициент жесткости анкера $C_{V_{\infty}}(\kappa H/MM)$	11,1	12,5	12,5	16,7	16,7		20,0			

Допускаемые при расчете условия установки: основание бетон C20/25-C50/60 с трещинами и без трещин; ударное сверление, алмазное сверление.

Таблица 14.1 – **Предусмотренные температурные режимы для капсульного анкера HVU2**

	Допустимый	Максимальная	Максимальная
Температурный режим	диапазон	длительная	кратковременная
температурный режим	изменения	температура	температура при
	температур, °С	эксплуатации, °С	эксплуатации, °С
Температурный режим I	-43 +40	не более 24	+40
Температурный режим II	-43 +80	не более 50	+80
Температурный режим III	-43 +120	не более 72	+120

Таблица 14.2 – Конструктивные требования к размещению анкеров HVU2 + HIS

HVU2 + HIS	HIS-N/HIS-RN							
	M8	M10	M12	M16	M20			
Эффективная глубина анкеровки hef (мм)	90	110	125	170	205			
Диаметр отверстия для установки анкера do (мм)	14	18	22	28	32			
Минимальная толщина основания $h_{min}(mm)$	120	150	170	230	270			
1. Бетонное осно	вание без т	грещин						
1.1 Минимальное краевое расстояние $c_{min}(mm)$	40	45	55	65	90			
1.2 Минимальное межосевое расстояние smin (мм)	60	75	90	115	130			

Таблица 14.3 – Параметры для расчета прочности при растяжении для анкеров HVU2+HIS

HVU2 + HIS	HIS-N/HIS-RN							
	M8	M10	M12	M16	M20			
1. Разрушение по стали (п.б.1.1)								
1.1. Нормативное значение силы								
сопротивления анкера по стали $N_{n,s}$ (кH):								
HIS-N + болт / шпилька кл. 8.8	25	46	67	125	116			
HIS-RN + болт / шпилька кл. 70	26	41	59	110	166			

Окончание таблицы 14.3

HVU2 + HIC		HI	S-N/HIS-	RN				
HVU2 + HIS	M8	M10	M12	M16	M20			
1.2. Коэффициент надежности умя								
HIS-N + болт / шпилька кл. 8.8			1,5					
HIS-RN + болт / шпилька кл. 70		1,	87		2,4			
2. Разрушение от выкалыван	ия бетона с	снования	(п.6.1.3)					
2.1 Эффективная глубина анкеровки <i>hef</i> (мм)	90	110	125	170	205			
2.2 Коэффициент условий работы үмс			1,0					
3. Разрушение от раскалы	вания осно	вания (п. (6.1.4)					
3.1 Критическое краевое расстояние при								
раскалывании ссг, sp (мм)								
$h/h_{ef} \ge 2.0$	1,0 <i>hef</i>							
$1,3 < h/h_{ef} < 2,0$	$4.6 \ hef - 1.8 \ h$							
$h/h_{ef} \leq 1,3$			2,26 <i>hef</i>					
3.2 Критическое межосевое расстояние при			2.0					
раскалывании Scr,sp (мм)			2 Ccr,sp					
3.3 Коэффициент условий работы үмэр			1,0					
4. Комбинированное разрушение по контакту	и выкаль	іванию бе	гона основ	ания (п.6.1	.5)			
4.1 Номинальный диаметр анкера d_{nom} (мм)	12,5	16,5	20,5	25,4	27,6			
4.2 Нормативное сцепление клеевого анкера с			по табл. 14.4					
бетоном C20/25 без трещин $\tau_{n,urc}$ (H/мм ²)			по таол. 14.4					
4.3 Коэффициент, учитывающий фактическую								
прочность бетона основания ψ_c								
Бетон С20/25 – С50/60			1,0					
4.4 Коэффициент условий работы <i>умр</i>			1,0					

HI/I/2 + HIG		HI	S-N/HIS-	-RN		
HVU2 + HIS	M8	M10	M12	M16	M20	
1.1 Нормативное сцепление клеевого анкера с						
бетоном С20/25 без трещин при выполнении	HVU2					
отверстий ударным сверлением, ударным						
сверлением бурами ТЕ-CD, ТЕ-YD т _{п,urc} (H/мм ²)						
Температурный режим I (40/24 °C)			11,0			
Температурный режим II (80/50 °C)			9,0			
Температурный режим III (120/72 °C)			5,5			
1.2 Нормативное сцепление клеевого анкера с						
бетоном С20/25 без трещин при выполнении			HVU2			
отверстий алмазным сверлением $\tau_{n,urc}$ (H/мм ²)						
Температурный режим I (40/24 °C)			11,0			
Температурный режим II (80/50 °C)	9,0					
Температурный режим III (120/72 °C)			5,5			
1.3 Нормативное сцепление клеевого анкера с						
бетоном С20/25 с трещинами при выполнении			HVU2			
отверстий ударным сверлением, ударным			11, 62			
сверлением бурами ТЕ-СD, ТЕ- $\text{YD} \tau_{n,rc} (\text{H/mm}^2)$						
Температурный режим I (40/24 °C)			6,5			
Температурный режим II (80/50 °C)			5,0			
Температурный режим III (120/72 °C)			3,0			
1.4 Нормативное сцепление клеевого анкера с						
бетоном С20/25 с трещинами при выполнении			HVU2			
отверстий алмазным сверлением $\tau_{n,rc}$ (H/мм ²)						
Температурный режим I (40/24 °C)			4,5			
Температурный режим II (80/50 °C)			3,5			
Температурный режим III (120/72 °C)			2,5			

Таблица 14.5 — Параметры для расчета прочности при сдвиге для анкеров HVU2 + HIS

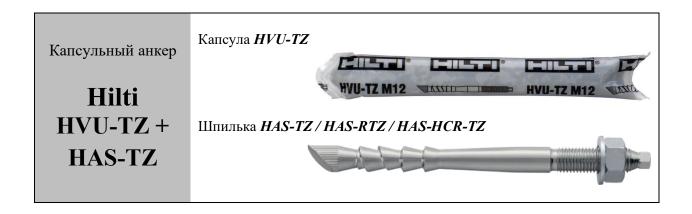

THE STATE OF THE S	HIS-N/HIS-RN							
HVU2 + HIS	M8	M10	M12	M16	M20			
Эффективная глубина анкеровки het (мм)	90	110	125	170	205			
1. Разрушение по	о стали (п.	6.2.1)						
1.1 Нормативное значение силы сопротивления								
анкера по стали без учета								
дополнительного момента $V_{n,s}$ (кH):								
HIS-N + болт / шпилька кл. 8.8	13	23	34	63	58			
HIS-RN + болт / шпилька кл. 70	13	20	30	55	83			
1.2 Нормативное значение предельного момента								
для анкера по стали M_0 (H·м): HIS-N + болт / шпилька кл. 8.8								
	30	60	105	266	519			
HIS-RN + болт / шпилька кл. 70	26	52	92	233	454			
1.3 Коэффициент условий групповой работы			1.0					
анкеров дз			1,0					
1.4. Коэффициент надежности умя								
HIS-N + болт / шпилька кл. 8.8			1,25					
HIS-RN + болт / шпилька кл. 70		,	56		2,0			
2. Разрушение от выкалывания бет	она основа	ания за ані	кером (п.6.	2.2)				
2.1 Коэффициент учета глубины анкеровки k			2,0					
2.2 Коэффициент условий работы <i>ууср</i>			1,0					
3. Разрушение от откалыван	ия края ос	нования (1	п. 6.2.3)					
3.1 Приведенная глубина анкеровки при сдвиге l_f (мм)	90 110 125 170 205							
3.2 Номинальный диаметр анкера <i>dnom</i> (мм)	12,5	16,5	20,5	25,4	27,6			
3.3 Коэффициент условий работы уvc			1,0					

Таблица 14.6 – Параметры для расчета деформативности при растяжении для анкеров HVU2 + HIS

HIVIO + HIG		HI	S-N/HIS	-RN				
HVU2 + HIS	M8	M10	M12	M16	M20			
1. Смещение анкеров от растягиваюц	цих усилий	і в бетоне (без трещиі	н (п. 7.6)				
Температурные режимы I, II, III								
1.1. Контрольное значение силы на анкер в бетоне C20/25- C50/60 без трещин (кН)	10							
1.2. Перемещения бм (мм)		0,15						
1.3. Перемещения δν∞ (мм)		0,	,10		0,15			
2. Смещение анкеров от растягивающ	их усилий	в бетоне с	трещинам	и (п. 7.6)				
Температурные режимы I, II, III								
2.1. Контрольное значение силы на анкер в бетоне C20/25- C50/60 с трещинами (кН)	10							
2.2. Перемещения бм (мм)	0,13							
2.3. Перемещения б№ (мм)	0,15							

Таблица 14.7 – Параметры для расчета деформативности при сдвиге для анкеров HVU2 + HIS

HVII2 + HIC		HIS-N/HIS-RN				
HVU2 + HIS	M8	M10	M12	M16	M20	
1. Смещение анкеров от сдвигающих усилий в бетоне с трещинами и без трещин (п. 7.7)						
1.1 Коэффициент жесткости анкера Суо (кН/мм)	16,7	16,7	20,0	25,0	25,0	
1.2 Коэффициент жесткости анкера <i>С</i> у∞ (кН/мм)	11,1	12,5	12,5	16,7	16,7	

Допускаемые при расчете условия установки: основание бетон C20/25-C50/60 с трещинами и без трещин; ударное сверление.

Таблица 15.1 – **Предусмотренные температурные режимы для капсульного анкера HVU-TZ**

	Допустимый	Максимальная	Максимальная
Тампародурний рауким	диапазон	длительная	кратковременная
Температурный режим	изменения	температура	температура при
	температур, °С	эксплуатации, °С	эксплуатации, °С
Температурный режим I	-43+80	не более 50	+80

Таблица 15.2 – Конструктивные требования к размещению анкеров HVU-TZ

		-	•	-				
III/II TZ + II AC TZ	HAS-TZ/HAS-RTZ/HAS-HCR-TZ							
HVU-TZ + HAS-TZ	M10x75	M12x95	M16x105	M16x125	M20x170			
Эффективная глубина анкеровки hef (мм)	75	95	105 125		170			
Диаметр отверстия для установки анкера $d\theta$ (мм)	12	14	18		18		25	
Минимальная толщина основания $h_{min}(мм)$	150	190	160	190	340			
1. Бетон	ное основан	ие без трещі	ин					
1.1 Минимальное краевое расстояние C_{min} (мм)	50	70	8	5	80			
1.2 Минимальное межосевое расстояние Smin (мм)	50	60	70		80			
2. Бетонное основание с трещинами								
2.1 Минимальное краевое расстояние C_{min} (мм)	50	60	70		80			
2.2 Минимальное межосевое расстояние Smin (мм)	50	60	7	0	80			

Таблица 15.3 – Параметры для расчета прочности при растяжении для анкеров HVU-TZ + HAS-TZ

111/11 TZ + 11.40 TZ	HAS-TZ/HAS-RTZ/HAS-HCR-TZ						
HVU-TZ + HAS-TZ	M10x75	M12x95	M16x105	M16x125	M20x170		
1. Pa3	ушение по с	тали (п.6.1.1	.)				
1.1. Нормативное значение силы	35	51	0	0	182		
сопротивления анкера по стали $N_{n,s}$ (кН):	33	31	9		162		
1.2. Коэффициент надежности <i>у</i> мs			1,5				
2. Разрушение	по контакту	с основание	м (п.6.1.5)				
4.2 Нормативное значение силы							
сопротивления анкера по контакту с							
основанием $N_{n,p}$ (кН)*:							
бетон С20/25 без трещин	-	40	-	-	-		
бетон С20/25 с трещинами*	-	-	-	-	-		
4.2. Коэффициент условий работы γ_{Np}			1,0				
4.3 Коэффициент, учитывающий							
фактическую прочность бетона							
основания ψ_c							
Бетон С20/25			1,0				
Бетон С25/30			1,1				
Бетон С30/С37			1,18				
Бетон С35/45			1,34				
Бетон С40/50			1,41				
Бетон С45/55			1,48				
Бетон С50/60	<u> </u>	<u> </u>	1,55	2)			
3. Разрушение от ві	ыкалывания ⊤	оетона осно	вания (п.б.1.	.3) 			
3.1 Эффективная глубина анкеровки hef (мм)	75	95	105	125	170		
3.2 Коэффициент условий работы умс			1,0				
4. Разрушение о	г раскалыва	ния основан	ия (п. 6.1.4)				
Для основания толщиной <i>h</i> ≥ 2 <i>hef</i> :							
3.1 Критическое краевое расстояние при			1 .				
раскалывании ссг, sp (мм)			1,5 <i>hef</i>				
3.2. Минимальная толщина основания	150	190	210	250	340		
h_{\min} (MM)	130	190	210	230	340		
Для основания толщиной $h < 2 \ hef$:							
3.3 Критическое краевое расстояние	_	_	2 hef	3 hef	_		
при раскалывании $c_{cr,sp}$ (мм)	-	-	2 Nef	3 Nef	-		
3.4. Минимальная толщина основания	_	_	160	190	_		
hmin (MM)			100	170			
3.5 Критическое межосевое расстояние			2 Ccr,sp				
при раскалывании scr,sp (мм)							
3.6 Коэффициент условий работы умяр	<u> </u>		1,0				
* для анкеров HVU-TZ с неустановленно							
контакту с основанием допускается не выпо	олнять – опре	деляющими	являются дру	тие формы р	азрушения		

111/11/77 1140/77	HAS-TZ/HAS-RTZ/HAS-HCR-TZ						
HVU-TZ + HAS-TZ	M10x75	M12x95	M16x105	M16x125	M20x170		
1. Разрушение по стали (п.6.2.1)							
1.1 Нормативное значение силы сопротивления анкера по стали без учета дополнительного момента $V_{n,s}$ (кН):							
HAS-TZ	18	27	5	1	88		
HAS-RTZ / HAS-HCR-TZ	20	30	5	6	98		
1.2 Нормативное значение предельного момента для анкера по стали $M^0_{n,s}(H\cdot m)$:	48	86	227		227		519
1.3. Коэффициент условий групповой работы анкеров λ s	1,0						
1.4 Коэффициент надежности умя			1,25				
2. Разрушение от выкалын	вания бетона	а основания	за анкером (п.6.2.2)			
2.1 Коэффициент учета глубины анкеровки <i>k</i>			2,0				
2.2 Коэффициент условий работы уср			1,0				
3. Разрушение от откалывания края основания (п. 6.2.3)							
3.1 Приведенная глубина анкеровки при сдвиге l_f (мм)	75	95	105	125	170		
3.2 Номинальный диаметр анкера <i>dnom</i> (мм)	10	12	2 16 20				
3.3 Коэффициент условий работы уус		•	1,0		•		

Таблица 15.5 – **Параметры для расчета деформативности при растяжении** для анкеров HVU-TZ + HAS-TZ

HIVI TZ + HAC TZ	TZ + HAS TZ						
HVU-TZ + HAS-TZ	M10x75	M12x95	M16x105	M16x125	M20x170		
1. Смещение анкеров от растягивающих усилий в бетоне без трещин (п. 7.6)							
1.1. Контрольное значение силы на анкер в бетоне C20/25- C50/60 без трещин (кН)			10				
1.2. Перемещения δνο (мм)	0,06	0,11	0,08	0,06	0,04		
1.3. Перемещения δ№ (мм)	0,77	0,63	0,46	0,36	0,23		
2. Смещение анкеров от раст	ягивающих ;	усилий в бет	оне с трещи	нами (п. 7.6)			
2.1. Контрольное значение силы на анкер в бетоне C20/25- C50/60 с трещинами (кН)			10				
2.2. Перемещения бло (мм)	0,30	0,19	0,16	0,13	0,08		
2.3. Перемещения δν∞ (мм)	1,08	0,94	0,54	0,46	0,32		

Таблица 15.6 – Параметры для расчета деформативности при сдвиге для анкеров HVU-TZ + HAS-TZ

	HAS-TZ/HAS-RTZ/HAS-HCR-TZ							
HVU-TZ + HAS-TZ	M10x75	M12x95	M16x105	M16x125	M20x170			
1. Смещение анкеров от сдвигающих усилий в бетоне с трещинами и без трещин (п. 7.7)								
1.1 Коэффициент жесткости анкера Сvo (кН/мм)	7,58	6,85	10,64	10,64	15,87			
1.2 Коэффициент жесткости анкера CV_{∞} (кН/мм)	4,95	4,5	7,09	7,09	11,24			

Допускаемые при расчете условия установки: основание бетон C20/25-C50/60 с трещинами и без трещин; ударное сверление, алмазное сверление.

Таблица 16.1 – **Предусмотренные температурные режимы для клеевого анкера HTI-HY 200-A**

Температурный режим	Допустимый диапазон изменения температур, °C	Максимальная длительная температура эксплуатации, °С	Максимальная кратковременная температура при эксплуатации, °C
Температурный режим I	-43 +40	не более 24	40
Температурный режим II	-43 +80	не более 50	80
Температурный режим III	-43+120	не более 72	120

Таблица 16.2 – Конструктивные требования к размещению анкеров HIT-HY 200-A + HIT-Z

***************************************	HIT-Z/HIT-Z-R						
<i>HIT-HY 200-A + HIT-Z</i>	M8	M10	M12	M16	M20		
Эффективная глубина анкеровки h_{ef} (мм)	60 – 100	60 – 120	60 - 144	96 – 192	100 - 220		
Диаметр отверстия для установки анкера d_0 (мм)	10	12	14	18	22		
Минимальная толщина основания при прочистке установочного отверстия $h_{min}(mm)$	$h_{ef} + 30$ мм, но не менее 100 мм			h_{ef} $+$ 45 mm			
Минимальная толщина основания без прочистки установочного отверстия $h_{\min}(\text{мм})$	$h_{ef} + 60 \text{ mm}$			$h_{ef}+1$	00 мм		
1. Бетонное основание	с трещина	ми и без тр	ещин				
1.1 Минимальное краевое расстояние $c_{\min}(\text{мм})$ 1.2 Минимальное межосевое расстояние $s_{\min}(\text{мм})$	см. п. 2						

Окончание таблицы 16.2

		HI	T-Z / HIT-	Z-R	
HIT-HY 200-A + HIT-Z	M8	M10	M12	M16	M20
2. Определение минимальных крас	евых <i>С</i> тіп И	межосевы	IX Smin pacc	тояний	
2.1 При определении c_{\min} и s_{\min} должно выполнятьс	ся условие	$A_{req} < A_{ef}$			ī
2.2 Требуемая площадь A_{req} (мм 2)					
Бетон с трещинами	19200	40800	58800	94700	148000
Бетон без трещин	22200	57400	80800	128000	198000
2.3 Фактическая площадь A _{ef} (мм ²)					
при толщине основания $h > h_{nom} + 1,5c$ для одиночного анкера и группы					
для одиночного анкера и труппы анкеров при $s>3c$		$A_{ef}=6c$	c(h _{ef} +1,5c) при	ı <i>c</i> ≥5 <i>d</i>	
анкеров при $s > 3c$ для группы анкеров при $s ≤ 3c$		$A_{ef}=(3c+s)$	<i>h_{ef}</i> +1,5 <i>c)</i> при	c>5d и s>5d	
Am Tpylling allicepes liph s_se			, -,, _F		
* C	*	1,5 c	S , 1,	5 c	
при толщине основания <i>h≤h_{nom}+1,5с</i> для одиночного анкера и группы	Aef	Aej	=(6c)h при с≥	5d	h h
анкеров при $s>3c$ для группы анкеров при $s≤3c$			+ <i>s)h</i> при <i>c</i> ≥5 <i>a</i>		
для группы апкеров при з_эе		Aej - (30	. <i>5)11</i> 11PH C=30	. 11 5 <u>-</u> 54	
h ef	1,5			1,5 c	h +

Таблица 16.3 – Параметры для расчета прочности при растяжении для анкеров HIT-HY 200-A + HIT-Z

		HIT-Z/HIT-Z-R					
HIT-HY 200-A + HIT-Z	M8	M10	M12	M16	M20		
1. Разрушение п	о стали (п	.6.1.1)					
1.1 Нормативное значение силы							
сопротивления анкера по стали $N_{n,s}$ (кH):							
HIT-Z, HIT-Z-F, HIT-Z-R	24	38	55	96	146		
1.2 Коэффициент надежности умs			1,5				
2. Разрушение по контак	ту с основ	анием (п.	5.1.2)				
2.1. Нормативное значение силы сопротивления							
анкера по контакту с бетоном без трещин $N_{n,p}$							
(кН)							
Температурный режим I (40/24 °C)	30	44	50	115	150		
Температурный режим II (80/50 °C)	26	40	48	105	135		
Температурный режим III (120/72 °C)	24	36	44	95	125		
2.2. Нормативное значение силы сопротивления							
анкера по контакту с бетоном с трещинами $N_{n,p}$							
(кН)							
Температурный режим I (40/24 °C)	26	40	48	105	135		
Температурный режим II (80/50 °C)	24	36	44	95	125		
Температурный режим III (120/72 °C)	22	32	40	85	110		
3. Разрушение от выкалыван	ия бетона	основани	я (п.6.1.3)				
2.1 Коэффициент условий работы у _{Nc}			1,0				
4. Разрушение от раскалы	вания осн	ювания (п	.6.1.4)				
4.1 Критическое краевое расстояние при							
раскалывании $C_{cr,sp}$ (мм)							
$h/h_{ef} \ge 2.35$			1,5 $h_{e\!f}$				
$1,35 < h/h_{ef} < 2,35$	$6,2 \; h_{ef}$ $-2,0 \; h$						
$h/h_{ef} \le 1,35$	3,5 <i>h</i> _{ef}						
4.2 Критическое межосевое расстояние при			$2 c_{cr,sp}$				
раскалывании $s_{cr,sp}$ (мм)							
4.3 Коэффициент условий работы γ_{Nsp}			1,0				

Таблица 16.4 — **Параметры для расчета прочности при сдвиге для анкеров HIT-HY 200-A + HIT-Z**

WW. WW. 200 / 1 WW. 7	HIT-Z/HIT-Z-R					
HIT-HY 200-A + HIT-Z	M8	M10	M12	M16	M20	
1. Разрушение п	о стали (п	.6.2.1)				
1.1 Нормативное значение силы						
сопротивления анкера по стали без учета						
дополнительного момента $V_{n,s}$ (кН):						
HIT-Z, HIT-Z-F	12	19	27	48	73	
HIT-Z-R	14	23	33	57	88	
1.2 Нормативное значение предельного						
момента для анкера по стали $M^{0}_{n,s}(H\cdot M)$						
HIT-Z/HIT-Z-R/HIT-Z-F	24	49	85	203	386	
1.3. Коэффициент условий групповой			1,0			
работы анкеров λ_s			1,0			
1.4 Коэффициент надежности γ_{Vs}			1,25			

Окончание таблицы 16.4

***************************************	HIT-Z/HIT-Z-R							
HIT-HY 200-A + HIT-Z	M8	M10	M12	M16	M20			
2. Разрушение от выкалывания бе	гона основ	ания за аг	нкером (п.	6.2.2)				
2.1 Коэффициент учета глубины анкеровки <i>k</i>			2,0					
2.2 Коэффициент условий работы γ_{Vcp}			1,0					
3. Разрушение от откалыва	ния края о	снования	(п. 6.2.3)					
3.1 Приведенная глубина анкеровки при сдвиге l_f (мм)		$l_f = h_{e\!f}$						
3.2 Номинальный диаметр анкера <i>d_{nom}</i> (мм)	8	10	12	16	20			
3.3 Коэффициент условий работы уус	1,0							

Таблица 16.5 — **Параметры для расчета деформативности при растяжении для анкеров HIT-HY 200-A + HIT-Z**

	HIT-Z/HIT-Z-R								
HIT-HY 200-A + HIT-Z	M8	M10	M12	M16	M20				
1. Смещение анкеров от растягивающ	их усилий	і в бетоне	без трещи	н (п. 7.6)					
1.1 Коэффициент податливости									
анкера $c_{N,0}$ (мм/МПа)									
Температурный режим I (40/24 °C)	0,03	0,03	0,04	0,05	0,07				
Температурный режим II (80/50 °C)	0,03	0,04	0,04	0,06	0,07				
Температурный режим III (120/72 °C)	0,03	0,04	0,05	0,06	0,08				
1.2 Коэффициент податливости									
анкера $c_{N,\infty}$ (мм/МПа)									
Температурный режим I (40/24 °C)	0,06	0,08	0,10	0,13	0,17				
Температурный режим II (80/50 °C)	0,07	0,09	0,11	0,15	0,18				
Температурный режим III (120/72 °C)	0,07	0,10	0,12	0,16	0,20				
2. Смещение анкеров от растягивающи	их усилий	в бетоне с	трещинам	ии (п. 7.6)					
2.1 Коэффициент податливости									
анкера $c_{N,0}$ (мм/МПа)									
Температурный режим I (40/24 °C)	0,06	0,07	0,08	0,09	0,10				
Температурный режим II (80/50 °C)	0,07	0,08	0,08	0,10	0,11				
Температурный режим III (120/72	0.07	0.00	0.00	0,11	0.12				
°C)	0,07	0,08	0,09	0,11	0,12				
2.2 Коэффициент податливости									
анкера $c_{N,\infty}$ (мм/МПа)									
Температурный режим I (40/24 °C)			0,21						
Температурный режим II (80/50 °C)			0,23						
Температурный режим III (120/72			0.25						
°C)			0,25						

Таблица 16.6 – Параметры для расчета деформативности при сдвиге для анкеров HIT-HY 200-A + HIT-Z

	HIT-Z/HIT-Z-R							
HIT-HY 200-A + HIT-Z	M8	M10	M12	M16	M20			
1. Смещение анкеров от сдвигающих усилий в бетоне с трещинами и без трещин (п. 7.7)								
1.1 Коэффициент жесткости анкера C_{V0} (кН/мм)	16,7	16,7	20,0	25,0	25,0			
1.2 Коэффициент жесткости анкера $C_{V\infty}$ (кН/мм)	11,1	12,5	12,5	16,7	16,7			

Допускаемые при расчете условия установки:

HIT-RE 500 V4 + **HAS-U** - основание бетон C20/25-C50/60 с трещинами и без трещин; ударное сверление, ударное сверление (водонаполненные отверстия), алмазное сверление, алмазное сверление с созданием шероховатостей стенок отверстия с помощью инструмента Hilti TE-YRT.

HIT-HY 170 + HAS-U - основание бетон C20/25-C50/60 с трещинами и без трещин; ударное сверление;

HIT-HY 200-A + **HAS-U** - основание бетон C20/25-C50/60 с трещинами и без трещин; ударное сверление;

Таблица 17.1 – **Предусмотренные температурные режимы для клеевого анкера HIT-RE 500 V4**

Температурный режим	Допустимый диапазон изменения температур, °C	Максимальная длительная температура эксплуатации, °C	Максимальная кратковременная температура при эксплуатации, °C
Температурный режим I	-40 +40	не более 24	40
Температурный режим II	-40 +55	не более 43	55
Температурный режим III	-40 +75	не более 55	75

Таблица 17.2 – **Предусмотренные температурные режимы для клеевого анкера HIT-HY 170**

Температурный режим	Допустимый диапазон изменения температур, °С	Максимальная длительная температура эксплуатации, °С	Максимальная кратковременная температура при эксплуатации, °C
Температурный режим I	-43 +40	не более 24	40
Температурный режим II	-43 +80	не более 50	80

Таблица 17.3 – **Предусмотренные температурные режимы для клеевого анкера HIT-HY 200-A**

Температурный режим Допустимый диапазон изменения температур, °C	Максимальная	Максимальная	
	длительная	кратковременная	
	температура	температура при	
	температур, С	эксплуатации, °С	эксплуатации, °С
Температурный режим I	-43 +40	не более 24	40
Температурный режим II	-43 +80	не более 50	80
Температурный режим III	-43 +120	не более 72	120

Таблица 17.4 – Конструктивные требования к размещению анкеров HIT-RE 500 V3 / HIT-HY 170 / HIT-HY 200-A + HAS-U

<i>HIT-RE 500 V4</i> + <i>HAS-U</i>		H	AS-U/I	HAS-U	A4/HA	S-UHC	C R	
HIT-HY 170 + HAS-U HIT-HY 200-A + HAS-U	M8	M10	M12	M16	M20	M24	M27	M30
Эффективная глубина анкеровки h_{ef}								
(MM)								
HIT-RE 500 V4	60-160	60-200	70-240	80-320	90-400	96-480	108-540	120-600
HIT-HY 170	60–96	60-120	70-144	80-192	90-240	96–288	-	-
HIT-HY 200-A	60-160	60-200	70-240	80-320	90-400	96-480	108-540	120-600
Диаметр отверстия для установки								
анкера d_0 (мм)								
HIT-RE 500 V4	10	12	14	18	22	28	30	35
HIT-HY 170	10	12	14	18	22	28	-	-
HIT-HY 200-A	10	12	14	18	22	28	30	35
Минимальная толщина	h.	$_{ef} + 30 \text{ MM}$	И,			1. + 2.1		
основания $h_{\min}(\text{мм})$	но не	менее 1	00 мм			$h_{ef}+2d_0$		
1. Основание из	бетона (C20/25 c	трещин	ами и б	ез трещі	ин		
2.2 Минимальное межосевое								
расстояние Smin (мм)								
HIT-RE 500 V4	40	50	60	75	90	115	120	140
HIT-HY 170	40	50	60	75	90	115	-	-
HIT-HY 200-A	40	50	60	75	90	115	120	140
2.1 Минимальное краевое расстояние								
C_{min} (MM)								
HIT-RE 500 V4	40	45	45	50	55	60	75	80
HIT-HY 170	40	45	45	50	55	60	-	-
HIT-HY 200-A	40	45	45	50	55	60	75	80

 Таблица 17.5 — Параметры для расчета прочности при растяжении для анкеров HIT-RE 500 V4 / HIT-HY 170 / HIT-HY 200-A + HAS-U

HIT-RE 500 V4 + HAS-U		Н	AS-U/	HAS-U	A4/HA	S-U H	C R			
HIT-HY 170 + HAS-U	M8	M10	M12	M16	M20	M24	M27	M30		
HIT-HY 200-A + HAS-U								5.20		
	'азруше 	ние по с	тали (п.	0.1.1)		1				
1.1. Нормативное значение силы										
сопротивления анкера по стали $N_{n,s}$										
(кН): HAS- U 5.8	10.2	20.0	42.2	70.5	100.5	1765	220.5	200.5		
HAS-U 8.8	18,3	29,0	42,2	78,5	122,5	176,5	229,5	280,5		
	29,3	46,4	67,4	125,6	196,0	282,4	367,2	448,8		
HAS-U A4 HAS-U HCR	25,6	40,6	59,0	109,9	171,5	247,1	229,5	280,5		
	29,3	46,4	67,4	125,6	196,0	247,1	321,3	392,7		
1.2. Коэффициент надежности γ_{Ns}										
HAS-U 5.8					,5 .5					
HAS-U 8.8			1		,5		1 2	0.6		
HAS-U A4				87		I	11	86		
HAS-U HCR			1,5		((_1	1.2)	2,1			
2. Разрушение от	выкал	ывания	оетона (основан	ия (п.о.)	1.3)				
2.1 Коэффициент условий работы <i>_{Nuc}</i> HIT-RE 500 V4										
Ударное сверление	1,0									
Ударное сверление	1,4									
(водонаполненные отверстия)				1	,4					
Ударное сверление бурами					1.0					
TE-CD, TE-YD	-				1,0					
Алмазное сверление		1,2				1,4				
Алмазное сверление с										
созданием шероховатостей						1.0				
стенок отверстия с помощью		-				1,0				
инструмента Hilti TE-YRT										
HIT-HY 170			1	,0				-		
HIT-HY 200-A				1	,0					
3. Разрушени	е от рас	калыва	ния осно	вания (п. 6.1.4)					
3.1 Критическое краевое расстояние										
при раскалывании $c_{cr,sp}$ (мм)										
$h/h_{ef} \ge 2.0$				1,0	h_{ef}					
$1,3 < h/h_{ef} < 2,0$				$4,6 h_{ef}$	− 1,8 <i>h</i>					
$h/h_{ef} \leq 1.3$				2,20	δh_{ef}					
3.2 Критическое межосевое										
расстояние при раскалывании				2 <i>c</i>	cr,sp					
$S_{cr,sp}$ (MM)										
3.3 Коэффициент условий				см п	эз. 2.1					
работы γ_{Nsp}										
4. Комбинированное разрушени	е по кон	ітакту и	выкаль	ыванию	бетона (основан	ия (п.6.1	1.5)		
4.1 Номинальный диаметр	8	10	12	16	20	24	27	30		
анкера d_{nom} (мм)						1		<u> </u>		
4.2 Нормативное сцепление				-	. 15.					
клеевого анкера с бетоном				по таб	бл. 17.6					
C20/25 τ_n (H/MM ²)										
4.3 Коэффициент, учитывающий										
фактическую прочность бетона				$(f_{ck}/2)$	$(20)^{0,1}$					
основания ψ_c^*										
4.4 Коэффициент условий работы γ_{Np}					оз. 2.1					
*Для анкеров Hilti HIT-RE 500										
шероховатостей стенок отверстия с г		о инстру	мента Н	ilti TE-Y	/RT знач	чение ко	эффици	ента ус		
принимается 1,0 независимо от класса	бетона									

Таблица 17.6 – Нормативное сцепление τ_n клеевого анкера HIT-RE 500 V4 / HIT-HY 170 / HIT-HY 200-A + HAS-U

	H	IAS-U/	HAS-U	A4/H	AS-U H	CR								
1/10	M10	M12	M16	Maa	M21	M27	M30							
Mo	MIIU	IVI I 2	IVIIO	W120	IVI 24	IVI 2 /	MISU							
			HIT-R	E 500 V4	!									
19	18	18	17	16	15	15	14							
16	15	15	14	13	13	12	12							
6,0	6,0	6,0	5,5	5,0	5,0	4,5	4,5							
			HIT_R	F 500 VA	!									
			1111-10	L 300 / 4										
			_	T	1		T							
13	13	13	13	12	12	12	12							
12	12	11	11	11	11	11	10							
6,0	5,5	5,5	5,5	5,5	5,5	5,5	5,0							
			HIT-R	E 500 V4	!									
	1	1	1	1	1									
							12							
							10							
5,0	5,0	5,0	4,5	4,5	4,0	4,0	4,0							
			IIIT D	E 500 1/A	,									
			1111-K	E 300 V4										
7.5	9.0	11	11	10	9.5	9.0	8,5							
					-		7,0							
				1			3,0							
	2,0	2,0		5,0	5,0	5,0	2,0							
	•		<u> </u>				***************************************							
			HIT-	HY 170										
,			HIT-	HY 170										
,				HY 170			-							
			10,0	HY 170			-							
				HY 170			- -							
			10,0 7,5				-							
			10,0 7,5	HY 170 HY 170			- -							
-		5,5	10,0 7,5			-	-							
	16 6,0	M8 M10 19 18 16 15 6,0 6,0 13 13 12 12 6,0 5,5	M8 M10 M12 19 18 18 16 15 15 6,0 6,0 6,0 13 13 13 12 12 11 6,0 5,5 5,5	M8 M10 M12 M16 HIT-R. 19 18 18 17 16 15 15 14 6,0 6,0 6,0 5,5 HIT-R. 13 13 13 13 12 12 11 11 6,0 5,5 5,5 5,5 HIT-R. 16 16 15 15 13 13 13 12 5,0 5,0 5,0 4,5 HIT-R. The state of the state o	M8 M10 M12 M16 M20 HIT-RE 500 V4 19 18 18 17 16 16 15 15 14 13 6,0 6,0 6,0 5,5 5,0 HIT-RE 500 V4 HIT-RE 500 V4 16 16 15 15 14 13 13 12 11 11 11 11 5,5 5,5 5,5 5,5 5,5 5,5 5,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5 8,0 8,0 9,0 8,5 8,0 <td< td=""><td>M8 M10 M12 M16 M20 M24 HIT-RE 500 V4 19 18 18 17 16 15 16 15 15 14 13 13 6,0 6,0 6,0 5,5 5,0 5,0 HIT-RE 500 V4 HIT-RE 500 V4</td><td>HIT-RE 500 V4 19</td></td<>	M8 M10 M12 M16 M20 M24 HIT-RE 500 V4 19 18 18 17 16 15 16 15 15 14 13 13 6,0 6,0 6,0 5,5 5,0 5,0 HIT-RE 500 V4 HIT-RE 500 V4	HIT-RE 500 V4 19							

Окончание таблицы 17.6

HIT-RE 500 V4 + HAS-U	HAS-U/HAS-U A4/HAS-U HCR								
HIT-HY 170 + HAS-U HIT-HY 200-A + HAS-U	M8 M10 M12 M16 M20 M24 M27 M3								
1.5 Нормативное сцепление клеевого анкера с бетоном C20/25 без трещин $\tau_{n,urc}$ (H/мм ²)	НІТ-НҮ 200-А								
Температурный режим I (40/24 °C) Температурный режим II (80/50 °C) Температурный режим III (120/72 °C)	18 15 13								
1.6 Нормативное сцепление клеевого анкера с бетоном C20/25 с трещинами $\tau_{n,rc}$ (H/мм ²)	HIT-HY 200-A								
Температурный режим I (40/24 °C)	7,5 8,5 9,0								
Температурный режим II (80/50 °C)	6,0 7,0 7,5								
Температурный режим III (120/72 °C)	5	,5		6,0			6,5		

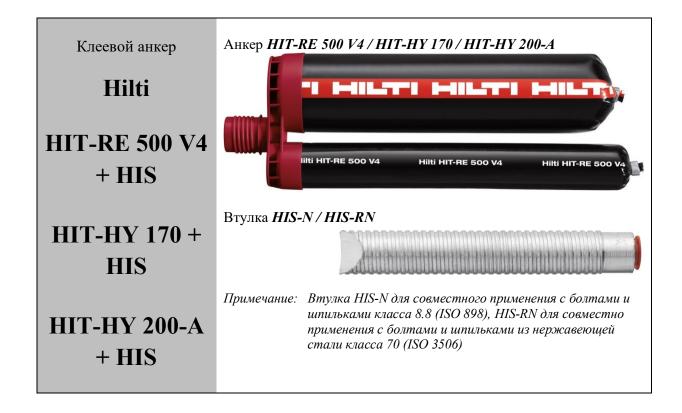
 Таблица 17.7 — Параметры для расчета прочности при сдвиге для анкеров HIT-RE 500 V4 / HIT-HY 170 / HIT-HY 200-A + HAS-U

HIT-RE 500 V4 + HAS-U		Н	AS-U/	HAS-U	A4 / HA	S-U HO	\overline{CR}	
HIT-HY 170 + HAS-U								
HIT-HY 200-A + HAS-U	M8	M10	M12	M16	M20	M24	M27	M30
1. P	азрушен	ие по ст	али (п.6	5.2.1)				
1.1 Нормативное значение силы								
сопротивления анкера по стали без								
учета дополнительного момента $V_{n,s}$								
(кН) в бетоне С20/25:								
HIT-RE 500 V4, HIT-HY 170,								
HIT-HY 200-A +								
HAS-U 5.8	9,2	14,5	21,1	39,3	61,3	88,3	114,8	140,3
HAS-U 8.8	14,6	23,2	33,7	62,8	98,0	141,2	183,6	224,4
HAS-U A4	12,8	20,3	29,5	55,0	85,8	123,6	114,8	140,3
HAS-U HCR	14,6	23,2	33,7	62,8	98,0	123,6	160,7	196,4
1.2 Нормативное значение								
предельного момента для анкера по								
стали $M^{0}_{n,s}$ (Н·м) в бетоне C20/25:								
HIT-RE 500 V4, HIT-HY 170,								
HIT-HY 200-A +								
HAS-U 5.8	18,7	37,4	65,4	166,2	324,6	561,0	832,2	1124,4
HAS-U 8.8	30,0	59,8	104,6	265,9	519,4	897,6	1331,5	1799,0
HAS-U A4	26,2	52,3	91,6	232,7	454,4	785,4	832,2	1124,4
HAS-U HCR	30,0	59,8	104,6	265,9	519,4	785,4	1165,1	1574,2
1.3 Коэффициент условий групповой				1	,0			
работы анкеров λ_s				1	,0			
1.4 Коэффициент надежности γ_{Vs}								
HAS-U 5.8				1,	25			
HAS-U 8.8				1,	25			
HAS-U A4			1,	56			2,	38
HAS-U HCR			1,25				1,75	
2. Разрушение от выка	лывани	я бетона	основа	ния за а	нкером	(п.6.2.2)		
2.1 Коэффициент учета глубины								
анкеровки <i>k</i>								
h_{ef} $<$ 60 мм				1	,0			
$h_{e\!f} {\geq} 60$ мм				2	,0			
2.2 Коэффициент условий работы γ_{Vcp}				1	,0			

Окончание таблицы 17.7

HIT-RE 500 V4 + HAS-U	HAS-U/HAS-U A4/HAS-U HCR								
HIT-HY 170 + HAS-U HIT-HY 200-A + HAS-U	M8	M10	M12	M16	M20	M24	M27	M30	
3. Разрушение от откалывания края основания (п. 6.2.3)									
3.1 Приведенная глубина анкеровки при сдвиге l_f (мм)	$l_f = h_{e\!f\!s}$, но не более 8 d_{nom}								
3.2 Номинальный диаметр анкера d_{nom} (мм)	8	10	12	16	20	24	27	30	
3.3 Коэффициент условий работы γ_{Vc}	1,0								

Таблица 17.8 — **Параметры для расчета деформативности при растяжении для** анкеров HIT-RE 500 V4 / HIT-HY 170 / HIT-HY 200-A + HAS-U


HIT-RE 500 V4 + HAS-U		H	AS-U/	HAS-U	A4/H	4S-UH	CR	
HIT-HY 170 + HAS-U HIT-HY 200-A + HAS-U	M8	M10	M12	M16	M20	M24	M27	M30
1. Смещение анкеров от растягивающих усилий в бетоне без трещин (п. 7.6)								
1.1 Коэффициент податливости								
анкера $c_{N,0}$ (мм/МПа)								
HIT-RE 500 V4								
Температурный режим I (40/24 °C)	0,04	0,05	0,05	0,06	0,06	0,07	0,08	0,08
Температурный режим II (55/43 °C)	0,05	0,05	0,06	0,07	0,07	0,08	0,09	0,10
Температурный режим III (75/55 °C)	0,05	0,06	0,06	0,07	0,08	0,09	0,09	0,10
HIT-HY 170	0,07	0,07	0,07	0,08	0,08	0,09	-	-
HIT-HY 200-A								
Температурный режим I (40/24 °C)	0,02	0,03	0,03	0,04	0,06	0,07	0,07	0,08
Температурный режим II (80/50 °C)	0,03	0,04	0,05	0,06	0,08	0,09	0,10	0,12
Температурный режим III (120/72 °C)	0,04	0,05	0,06	0,08	0,10	0,12	0,13	0,16
1.2 Коэффициент податливости								
анкера $c_{N,\infty}$ (мм/МПа)								
HIT-RE 500 V4								
Температурный режим I (40/24 °C)	0,10	0,11	0,12	0,13	0,15	0,17	0,18	0,19
Температурный режим II (55/43 °C)	0,12	0,13	0,14	0,16	0,18	0,20	0,21	0,23
Температурный режим III (75/55 °C)	0,12	0,13	0,15	0,17	0,19	0,21	0,23	0,24
HIT-HY 170	0,07	0,07	0,07	0,08	0,08	0,09	-	_
HIT-HY 200-A								
Температурный режим I (40/24 °C)	0,04	0,05	0,06	0,08	0,10	0,13	0,14	0,16
Температурный режим II (80/50 °C)	0,04	0,05	0,06	0,09	0,11	0,13	0,15	0,16
Температурный режим III (120/72 °C)	0,04	0,05	0,07	0,09	0,11	0,13	0,15	0,17

Окончание таблицы 17.8

HIT-RE 500 V4 + HAS-U		H.	AS-U/	HAS-U	A4/H	4S-UH	CR	
HIT-HY 170 + HAS-U HIT-HY 200-A + HAS-U	M8	M10	M12	M16	M20	M24	M27	M30
2. Смещение анкеров от растя	2. Смещение анкеров от растягивающих усилий в бетоне с трещинами (п. 7.6)							
2.1 Коэффициент податливости								
анкера $c_{N,0}$ (мм/МПа)								
HIT-RE 500 V4								
Температурный режим I (40/24 °C)	0,02	0,03	0,05	0,08	0,10	0,13	0,15	0,18
Температурный режим II (55/43 °C)	0,02	0,04	0,06	0,09	0,12	0,16	0,18	0,21
Температурный режим III (75/55 °C)	0,02	0,04	0,06	0,10	0,13	0,17	0,19	0,22
HIT-HY 170	-	0,07	0,07	0,06	-	-	-	-
HIT-HY 200-A								
Температурный режим I (40/24 °C)				0	,07			
Температурный режим II (80/50 °C)				0	,10			
Температурный режим III (120/72 °C)				0	,13			
2.2 Коэффициент податливости								
анкера $c_{N,\infty}$ (мм/МПа)								
HIT-RE 500 V4								
Температурный режим I (40/24 °C)	0,12	0,19	0,14	0,19	0,16	0,16	0,15	0,18
Температурный режим II (55/43 °C)	0,15	0,23	0,17	0,23	0,19	0,19	0,18	0,21
Температурный режим III (75/55 °C)	0,16	0,24	0,18	0,24	0,20	0,20	0,19	0,22
HIT-HY 170	-	0,11	0,11	0,11	-	-	-	-
HIT-HY 200-A								
Температурный режим I (40/24 °C)				0	,16			
Температурный режим II (80/50 °C)				0	,22			
Температурный режим III (120/72 °C)				0	,29			

Таблица 17.9 — **Параметры для расчета деформативности при сдвиге для анкеров HIT-RE 500 V4 / HIT-HY 170 / HIT-HY 200-A + HAS-U**

HIT-RE 500 V4 + HAS-U	HAS-U/HAS-U A4/HAS-U HCR							
HIT-HY 170 + HAS-U HIT-HY 200-A + HAS-U	M8	M10	M12	M16	M20	M24	M27	M30
1. Смещение анкеров от сдвигающих усилий в бетоне с трещинами и без трещин (п. 7.7)								
1.1 Коэффициент жесткости анкера при сдвиге <i>C_{V,0}</i> (кН/мм)	16,7		20,0	25,0		33,3		
1.2 Коэффициент жесткости анкера при сдвиге $C_{V,\infty}$ (кН/мм)	11,1 12		2,5	16,7		20,0		

Допускаемые при расчете условия установки:

HIT-RE 500 V4 + HIS - основание бетон C20/25-C50/60 с трещинами и без трещин; ударное сверление, ударное сверление (водонаполненные отверстия), алмазное сверление, алмазное сверление с созданием шероховатостей стенок отверстия с помощью инструмента Hilti TE-YRT.

HIT-HY 170 + HIS - основание бетон C20/25-C50/60 с трещинами и без трещин; ударное сверление.

HIT-HY 200-A + HIS - основание бетон C20/25-C50/60 с трещинами и без трещин; ударное сверление.

Таблица 18.1 – **Предусмотренные температурные режимы для клеевого анкера HIT-RE 500 V4**

	Понтуотты н	Максимальная	Максимальная
Температурный режим	Допустимый диапазон изменения	длительная	кратковременная
температурный режим	температур, °С	температура	температура при
	температур, С	эксплуатации, °С	эксплуатации, °С
Температурный режим I	-40 +40	не более 24	40
Температурный режим II	-40 +55	не более 43	55
Температурный режим III	-40 +75	не более 55	75

Таблица 18.2 – **Предусмотренные температурные режимы для клеевого анкера HIT-HY 170**

Температурный режим	Допустимый диапазон изменения температур, °C	Максимальная длительная температура эксплуатации, °С	Максимальная кратковременная температура при эксплуатации, °C
Температурный режим I	-40 +40	не более 24	40
Температурный режим II	-40 +80	не более 50	80

Таблица 18.3 – **Предусмотренные температурные режимы для клеевого анкера HIT-HY 200-A**

	Понуступий	Максимальная	Максимальная
Температурный режим	Допустимый диапазон изменения	длительная	кратковременная
температурный режим	температур, °С	температура	температура при
	температур, С	эксплуатации, °С	эксплуатации, °С
Температурный режим I	-43 +40	не более 24	40
Температурный режим II	-43 +80	не более 50	80
Температурный режим III	-43 +120	не более 72	120

Таблица 18.4 – Конструктивные требования к размещению анкеров HIT-RE 500 V4 / HIT-HY 170 / HIT-HY 200-A + HIS

HIT-RE 500 V4 + HIS		HIS-N/HIS-RN						
HIT-HY 170 + HIS HIT-HY 200-A + HIS	M8	M10	M12	M16	M20			
Эффективная глубина анкеровки h_{ef} (мм)								
HIT-RE 500 V4	90	110	125	170	205			
HIT-HY 170	90	110	125	170	-			
HIT-HY 200-A	90	110	125	170	205			
Диаметр отверстия для установки анкера d_0								
(MM)								
HIT-RE 500 V4	14	18	22	28	32			
HIT-HY 170	14	18	22	28	-			
HIT-HY 200-A	14	18	22	28	32			
Минимальная толщина основания $h_{\min}(MM)$								
HIT-RE 500 V4	120	150	170	230	270			
HIT-HY 170	120	150	170	230	-			
HIT-HY 200-A	120	150	170	230	270			
1. Бетонное основан	ие с трещи	нами и без	трещин					
1.1 Минимальное краевое расстояние								
$C_{\min}(MM)$								
HIT-RE 500 V4	40	45	55	65	90			
HIT-HY 170	40	45	55	65	-			
HIT-HY 200-A	40	45	55	65	90			
1.2 Минимальное межосевое расстояние								
$S_{\min}(MM)$								
HIT-RE 500 V4	60	75	90	115	130			
HIT-HY 170	60	75	90	115	-			
HIT-HY 200-A	60	75	90	115	130			

Таблица 18.5 — **Параметры для расчета прочности при растяжении для анкеров HIT-RE 500 V4 / HIT-HY 170 / HIT-HY 200-A + HIS**

HIT-RE 500 V4 + HIS	HIS-N/HIS-RN							
<i>HIT-HY 170 + HIS</i>	MQ	M8 M10 M12 M16						
HIT-HY 200-A + HIS			17112	11110	M20			
	ение по стал	и (п.6.1.1)	1	T	T			
1.1 Нормативное значение силы								
сопротивления анкера по стали $N_{n,s}$ (кН):								
HIS-N + болт / шпилька кл. 8.8	25	46	67	125	116			
HIS-RN + болт / шпилька кл. 70	26	41	59	110	166			
1.2 Коэффициент надежности γ_{Ns}								
HIS-N + болт / шпилька кл. 8.8		_	1,5		l			
HIS-RN + болт / шпилька кл. 70			,87	2)	2,4			
2. Разрушение от выка.	пывания бет	она основа	ания (п.6.1	.3)				
$2.1~{ m Ko}$ эффициент условий работы γ_{Nc}								
HIT-RE 500 V4								
Ударное сверление			1,0					
Ударное сверление			1,4					
(водонаполненные отверстия)			Ź					
Ударное сверление бурами TE-CD,			1,0					
TE-YD		Ī	ŕ					
Алмазное сверление	1,2			1,4				
Алмазное сверление с созданием								
шероховатостей стенок отверстия с	-			1,0				
помощью инструмента Hilti TE-YRT					1			
HIT-HY 170		1	1,0		-			
HIT-HY 200-A			1,0					
3. Разрушение от рас	скалывания	основания	я (п. 6.1.4)					
3.1 Критическое краевое расстояние при								
раскалывании $c_{cr,sp}$ (мм)								
$h/h_{ef} \ge 2.0$			1,0 <i>hef</i>	1				
$1,3 < h/h_{ef} < 2,0$			$4,6 \ hef - 1,8$	n				
$h/h_{ef} \le 1.3$			2,26 <i>hef</i>					
3.2 Критическое межосевое расстояние			2 Ccr,sp					
при раскалывании $s_{cr,sp}$ (мм)								
3.3 Коэффициент условий работы у _{Nsp}			см. поз. 2.1		(15)			
4. Комбинированное разрушение по ко	нтакту и вы	калывани	но оетона о	снования (1	1.6.1.5)			
4.1 Номинальный диаметр анкера d_{nom}	12,5	16,5	20,5	25,4	27,6			
(MM)			·					
4.2 Нормативное сцепление клеевого			по табл. 18.	5				
анкера с бетоном C20/25 т _п (H/мм ²)								
4.3 Коэффициент, учитывающий								
фактическую прочность бетона основания								
ψ_c^*			1.00					
Бетон С20/25			1,00					
Бетон С25/30			1,02					
Бетон C30/37 Гатан C25/45			1,04					
Бетон С35/45			1,06					
Бетон С40/50			1,07					
Бетон С45/55			1,08					
E 050/60	1		1,09					
Бетон C50/60 4.4 Коэффициент условий работы γ_{Np}	+		см. поз. 2.1					

 Таблица 18.6 — **Нормативное сцепление \tau_n клеевого анкера HIT-RE 500 V4 / HIT-HY 170 / HIT-HY 200-A**

HIT-RE 500 V4 + HIS	HIS-N/HIS-RN					
HIT-HY 170 + HIS	M8	M10	M12	M16	M20	
HIT-HY 200-A + HIS	1,10	1/110	1/112	1/110	1,120	
1.1 Нормативное сцепление клеевого						
анкера с бетоном С20/25 без трещин при						
выполнении отверстий ударным сверлением, ударным сверлением бурами						
тЕ-CD, тЕ-YD, алмазным сверлением с		H	IIT-RE 500	V4		
созданием шероховатостей стенок						
отверстия с помощью инструмента Hilti						
TE-YRT $\tau_{n,ucr}$ (H/Mm ²)						
Температурный режим I (40/24°C)			14			
Температурный режим II (55/43°C)			12			
Температурный режим III (75/55 °C)			4,5			
1.2 Нормативное сцепление клеевого						
анкера с бетоном С20/25 без трещин при		7	IIT-RE 500	174		
выполнении отверстий алмазным		п	III-KE SUU	V 4		
сверлением $\tau_{n,ucr}$ (H/мм ²)						
Температурный режим I (40/24°C)	8,5	9,0	9,5	10	10,0	
Температурный режим II (55/43°C)	8,0	8,0	8,5	9,0	9,0	
Температурный режим III (75/55 °C)	4,0	4,0	4,0	4,5	4,5	
1.3 Нормативное сцепление клеевого						
анкера с бетоном С20/25 без трещин при						
выполнении отверстий ударным		H	IIT-RE 500	V4		
сверлением (установка в водонаполненные						
отверстия) $\tau_{n,ucr}$ (H/мм ²)						
Температурный режим I (40/24°C)			12			
Температурный режим II (55/43°C)			10			
Температурный режим III (75/55 °C)			4,0			
1.4 Нормативное сцепление клеевого						
анкера с бетоном C20/25 с трещинами при выполнении отверстий ударным						
сверлением, ударным сверлением бурами						
тЕ-CD, тЕ-YD, алмазным сверлением с		H	IIT-RE 500	V 4		
созданием шероховатостей стенок						
отверстия с помощью инструмента Hilti						
TE-YRT $\tau_{n,cr}$ (H/mm ²)						
Температурный режим I (40/24°C)			9,0			
Температурный режим II (55/43°C)			8,0			
Температурный режим III (75/55 °C)			4,0			
1.5 Нормативное сцепление клеевого						
анкера с бетоном С20/25 без трещин			<i>HIT-HY 170</i>)		
$\tau_{n,ucr} (H/MM^2)$						
Температурный режим I (40/24 °C)		1	.0		-	
Температурный режим II (80/50 °C)		7	,5		-	
1.6 Нормативное сцепление клеевого						
анкера с бетоном С20/25 без трещин		I. I.	HIT-HY 200-	$\cdot A$		
$\tau_{n,ucr}$ (H/MM ²)						
Температурный режим I (40/24 °C)			13			
Температурный режим II (80/50 °C)			11			
Температурный режим III (120/72 °C)	9,5					
1.7 Нормативное сцепление клеевого		7	IIT UV 200	1		
анкера с бетоном C20/25 с трещинами $\tau_{n,cr}$ (H/мм ²)		I.	<i>НІТ-НҮ 200-</i>	71		
Температурный режим I (40/24 °C)			7,0			
Температурный режим I (40/24°C) Температурный режим II (80/50°C)			7,0 5,5			
Температурный режим II (80/30°C) Температурный режим III (120/72°C)			5,0			
TOWNTOPALLY PRIBITI PORTINI III (120/12 C)			2,0			

Таблица 18.7 — **Параметры для расчета прочности при сдвиге для анкеров HIT-RE 500 V4 / HIT-HY 170 / HIT-HY 200-A + HIS**

HIT-RE 500 V4 + HIS	HIS-N/HIS-RN						
HIT-HY 170 + HIS HIT-HY 200-A + HIS	M8	M10	M12	M16	M20		
Эффективная глубина анкеровки h_{ef} (мм)	90	110	125	170	205		
1. Разруш	ушение по стали (п.6.2.1)						
1.1 Нормативное значение силы							
сопротивления анкера по стали без							
учета дополнительного момента $V_{n,s}$ (кН):							
HIS-N + болт / шпилька кл. 8.8	13	23	34	63	58		
HIS-RN + болт / шпилька кл. 70	13	20	30	55	83		
1.2 Коэффициент надежности γ_{Vs}							
HIS-N + болт / шпилька кл. 8.8			1,25				
HIS-RN + болт / шпилька кл. 70		1	,56		2,0		
1.3 Нормативное значение предельного							
момента для анкера по стали $M^0_{\ n,s}$							
(H⋅w):							
HIS-N + болт / шпилька кл. 8.8	30	60	105	266	519		
HIS-RN + болт / шпилька кл. 70	26	52	92	233	454		
1.4 Коэффициент надежности γ_{Ms}							
HIS-N + болт / шпилька кл. 8.8			1,25				
HIS-RN + болт / шпилька кл. 70		1	,56		2,0		
1.5 Коэффициент условий групповой			1,0				
работы анкеров λ_s			,				
2. Разрушение от выкалыва	ния бетона	основания	за анкером	(п.6.2.2)			
2.1 Коэффициент учета глубины			2,0				
анкеровки k	2,0						
2.2 Коэффициент условий работы γ_{Vcp}			1,0				
3. Разрушение от отка	алывания і	срая основа	ния (п. 6.2.3	B)			
3.1 Приведенная глубина анкеровки при сдвиге l_f (мм)	$l_f = h_{ef}$						
3.2 Номинальный диаметр анкера d_{nom} (мм)	12,5	16,5	20,5	25,4	27,6		
3.3 Коэффициент условий работы γ_{c}		•	1,0				

Таблица 18.8 – Параметры для расчета деформативности при растяжении для анкеров HIT-RE 500 V4 + HIS / HIT-HY 170 + HIS HIT-HY 200-A + HIS

HIT-RE 500 V4 + HIS		HIS-N/HIS-RN					
HIT-HY 170 + HIS HIT-HY 200-A + HIS	M8	M10	M12	M16	M20		
1. Смещение анкеров от растягивающих ус	силий в б	етоне без	трещин ((п. 7.6)			
1.1 Коэффициент податливости анкера <i>с</i> _{N,0} (мм/МПа) HIT-RE 500 V4							
Температурный режим I (40/24 °C)	0,05	0,06	0,06	0,07	0,08		
Температурный режим II (55/43 °C)	0,06	0,07	0,07	0,08	0,09		
Температурный режим III (75/55 °C)	0,06	0,07	0,07	0,09	0,10		
HIT-HY 170	0,06	0,07	0,08	0,09	-		
HIT-HY 200-A							
Температурный режим I (40/24 °C)	0,03	0,05	0,06	0,07	0,08		
Температурный режим II (80/50 °C)	0,05	0,06	0,08	0,10	0,11		
Температурный режим III (120/72 °C)	0,06	0,08	0,10	0,13	0,14		

Окончание таблицы 18.8

<i>HIT-RE 500 V4 + HIS</i>	HIS-N/HIS-RN				
HIT-HY 170 + HIS	3.60	1/10	1/10	3/1/	1.620
HIT-HY 200-A + HIS	M8	M10	M12	M16	M20
1.2 Коэффициент податливости анкера $c_{N,\infty}$ (мм/МПа)					
HIT-RE 500 V4					
Температурный режим I (40/24 °C)	0,12	0,13	0,15	0,17	0,18
Температурный режим II (55/43 °C)	0,14	0,16	0,18	0,20	0,21
Температурный режим III (75/55 °C)	0,15	0,16	0,19	0,21	0,22
HIT-HY 170	0,06	0,07	0,08	0,09	-
HIT-HY 200-A					
Температурный режим I (40/24 °C)	0,06	0,09	0,11	0,13	0,14
Температурный режим II (80/50 °C)	0,07	0,09	0,11	0,13	0,15
Температурный режим III (120/72 °C)	0,07	0,09	0,11	0,14	0,15
2. Смещение анкеров от растягивающих уси	лий в бет	гоне с тре	щинами	(п. 7.6)	
2.1 Коэффициент податливости анкера с и,0 (мм/МПа)					
HIT-RE 500 V4					
Температурный режим I (40/24 °C)	0,02	0,03	0,05	0,08	0,10
Температурный режим II (50/43 °C)	0,02	0,04	0,06	0,09	0,12
Температурный режим III (75/55 °C)	0,02	0,04	0,06	0,10	0,13
HIT-HY 200-A					
Температурный режим I (40/24 °C)			0,11		
Температурный режим II (80/50 °C)			0,15		
Температурный режим III (120/72 °C)			0,20		
2.2 Коэффициент податливости анкера $c_{N,\infty}$ (мм/МПа)					
HIT-RE 500 V4					
Температурный режим I (40/24 °C)	0,12	0,19	0,14	0,19	0,16
Температурный режим II (55/43 °C)	0,15	0,23	0,17	0,23	0,19
Температурный режим II (75/55 °C)	0,16	0,24	0,18	0,24	0,20
HIT-HY 200-A			•	•	•
Температурный режим I (40/24 °C)	0,16				
Температурный режим IV (80/50 °C)	0,22				
Температурный режим V (120/72 °C)	0,29				

Таблица 18.9 — Параметры для расчета деформативности при сдвиге для анкеров HIT-RE 500 V4 / HIT-HY 170 / HIT-HY 200-A + HIS

HIT-RE 500 V4 + HIS		HIS-N/HIS-RN					
HIT-HY 170 + HIS HIT-HY 200-A + HIS	M8	M10	M12	M16	M20		
1. Смещение анкеров от сдвигающих усилий в (бетоне с т	рещинамі	и и без тр	ещин (п.	7.7)		
1.1 Коэффициент жесткости анкера при сдвиге $C_{V,0}$ (кН/мм) HIT-RE 500 V4 HIT-HY 170 HIT-HY 200-A	16,7 10 16,7	16,7 10 16,7	20 10 20	25 10 25	25 - 25		
1.2 Коэффициент жесткости анкера при сдвиге <i>C_{V,∞}</i> (кН/мм) HIT-RE 500 V4 HIT-HY 170 HIT-HY 200-A	11,1 6,7 11,1	12,5 6,7 12,5	12,5 6,7 12,5	16,7 6,7 16,7	16,7 - 16,7		

Допускаемые при расчете условия установки:

HIT-RE 500 V4 + HZA - основание бетон C20/25-C50/60 с трещинами и без трещин; ударное сверление, ударное сверление (водонаполненные отверстия), алмазное сверление, алмазное сверление с созданием шероховатостей стенок отверстия с помощью инструмента Hilti TE-YRT.

HIT-HY 200-A + HZA - основание бетон C20/25-C50/60 с трещинами и без трещин; ударное сверление.

Таблица 19.1 – Предусмотренные температурные режимы для клеевого анкера HIT-RE 500 V4

	Попустимий	Максимальная	Максимальная
Допустимый Температурный режим диапазон изменения	длительная	кратковременная	
температурный режим	пературный режим диапазон изменения температур, °C	температура	температура при
температур, С	эксплуатации, °С	эксплуатации, °С	
Температурный режим I	-40 +40	не более 24	40
Температурный режим II	-40 +55	не более 43	55
Температурный режим III	-40 +75	не более 55	75

Таблица 19.2 – **Предусмотренные температурные режимы для клеевого анкера HIT-HY 200-A**

	Понуступий	Максимальная	Максимальная
Температурный режим Допустимый диапазон изменения		длительная	кратковременная
		температура	температура при
температур, °С	температур, С	эксплуатации, °С	эксплуатации, °С
Температурный режим I	-43 +40	не более 24	40
Температурный режим II	-43 +80	не более 50	80
Температурный режим III	-43 +120	не более 72	120

Таблица 19.3 – **Конструктивные требования к установке анкеров HIT-RE 500 V4** + **HZA(-R)** / **HIT-HY 200-A** + **HZA(-R)**

HIT-RE 500 V4 + HZA(-R)	HZA / HZA-R				
HIT- $HY 200$ - $A + HZA(-R)$	M12	M16	M20	M24	M27
Эффективная глубина анкеровки h_{ef} (мм)*					
HZA	70 - 220	80 - 300	90 - 380	100 - 480	120 - 540
HZA-R	70 - 140	80 - 220	90 - 300	100 - 400	-
Диаметр отверстия для установки анкера d_0 (мм)	16	20	25	32	35
Минимальная толщина основания $h_{\min}(\text{мм})$			$h_{ef} + 2d_0$		
1. Бетонное основани	е с трещин	ами и без	грещин		
1.1 Минимальное краевое расстояние c_{min} (мм)	45	50	55	60	75
1.2 Минимальное межосевое расстояние s_{min} (мм)	65	80	100	130	140
* Эффективная глубина анкеровки для шпил части	ьки НΖА(-Г	принима	ется равно	й длине пр	офильной

Таблица 19.4 – Параметры для расчета прочности при растяжении для анкеров HIT-RE 500 V4 + HZA(-R) / HIT-HY 200-A + HZA(-R)

HIT-RE 500 V4 + HZA(-R)		H	ZA / HZA-	-R		
HIT- $HY 200$ - $A + HZA(-R)$	M12 M16 M20 M24 M					
1. Разрушени	ние по стали (п.6.1.1)					
1.1. Нормативное значение силы						
сопротивления анкера по стали $N_{n,s}$ (кH):						
HZA	46	86	135	194	253	
HZA-R	62	111	173	248	-	
1.2 Коэффициент надежности умя			1,4			
2. Разрушение от выкалы	вания бетс	на основа	ния (п.6.1.3	3)		
2.1 Коэффициент условий работы γ_{Nc} HIT-RE 500 V4						
Ударное сверление			1,0			
Ударное сверление			1,4			
(водонаполненные отверстия)			,			
Ударное сверление бурами ТЕ-CD, TE-YD	1,0					
Алмазное сверление	1,2		1.	4		
Алмазное сверление с созданием	ĺ		•			
шероховатостей стенок отверстия с	-		1,	0		
помощью инструмента Hilti TE-YRT						
HIT-HY 200-A			1,0			
3. Разрушение от раска	лывания (основания	(п. 6.1.4)			
3.1 Критическое краевое расстояние						
при раскалывании $c_{cr,sp}$ (мм)						
$h/h_{ef} \ge 2.0$			$1,0~h_{ef}$			
$1,3 < h/h_{ef} < 2,0$			4,6 <i>hef</i> − 1,8 <i>h</i>	!		
$h/h_{ef} \leq 1,3$			2,26 <i>hef</i>			
3.2 Критическое межосевое расстояние при			2.0			
раскалывании $s_{cr,sp}$ (мм)	$2 c_{cr,sp}$					
3.3 Коэффициент условий работы γ_{Nsp}	см. поз. 2.1					
4. Комбинированное разрушение по конта	акту и вын	салыванин	о бетона ос	нования (п.6.1.5)	
4.1 Номинальный диаметр анкера d_{nom} (мм)	12	16	20	25	28	
4.2 Нормативное сцепление клеевого анкера			по табл. 19.5			
с бетоном C20/25 τ_n (H/мм ²)			14011. 19.0			

Окончание таблицы 19.4

HIT-RE 500 V4 + HZA(-R)		HZA / HZA-R					
HIT- HY 200 - A + HZA (- R)	M12	M16	M20	M24	M27		
4.3 Коэффициент, учитывающий							
фактическую прочность бетона							
основания ψ_c^*							
Бетон С20/25			1,00				
Бетон С25/30			1,02				
Бетон С30/37			1,04				
Бетон С35/45			1,06				
Бетон С40/50			1,07				
Бетон С45/55			1,08				
Бетон С50/60			1,09				
4.4 Коэффициент условий работы _{УЛр}			см. поз. 2.1				

^{*}Для анкеров Hilti HIT-RE 500 V4 при выполнении отверстий алмазным сверлением с созданием шероховатостей стенок отверстия с помощью инструмента Hilti TE-YRT значение коэффициента ψ_c принимается 1,0 независимо от класса бетона

Таблица 19.5 — Нормативное сцепление τ_n клеевого анкера HIT-RE 500 V4 / HIT-HY 200-A

HIT-RE 500 V4 + HZA(-R)	HZA / HZA-R M12 M16 M20 M24 M22				
HIT- $HY 200$ - $A + HZA(-R)$					
1.1 Нормативное сцепление клеевого анкера с бетоном C20/25 без трещин при выполнении отверстий ударным сверлением, ударным сверлением бурами ТЕ-CD, ТЕ-YD, алмазным сверлением с созданием шероховатостей стенок отверстия с помощью инструмента Hilti TE-YRT $\tau_{n,urc}$ (H/мм²)	HIT-RE 500 V4				
Температурный режим I (40/24°C)	15	15	14	14	14
Температурный режим II (55/43°C)	12	12	12	11	11
Температурный режим III (75/55 °C)	5,0	4,5	4,5	4,5	4,5
1.2 Нормативное сцепление клеевого анкера с бетоном C20/25 без трещин при выполнении отверстий алмазным сверлением $\tau_{n,urc}$ (H/мм ²)	HIT-RE 500 V4				
Температурный режим I (40/24°C)	9,5	9,5	9,5	9,5	10
Температурный режим II (55/43°C)	8,5	8,5	8,5	8,5	8,5
Температурный режим III (75/55 °C)	4,0 4,0 4,0 4,5				
1.3 Нормативное сцепление клеевого анкера с бетоном $C20/25$ без трещин при выполнении отверстий ударным сверлением (установка в водонаполненные отверстия) $\tau_{n,urc}$ (H/мм ²)		HI	T-RE 500	V4	
Температурный режим I (40/24°C)	13	12	12	12	12
Температурный режим II (55/43°C)	11	10	10	10	9,5
Температурный режим III (75/55 °C)	4,0	4,0	4,0	4,0	3,5
1.4 Нормативное сцепление клеевого анкера с бетоном C20/25 с трещинами при выполнении отверстий ударным сверлением, ударным сверлением бурами ТЕ-CD, ТЕ-YD, алмазным сверлением с созданием шероховатостей стенок отверстия с помощью инструмента Hilti TE-YRT $\tau_{n,rc}$ (H/мм²)	HIT-RE 500 V4				
Температурный режим I (40/24°C)	12	12	12	11	11
Температурный режим II (55/43°C)	10	10	10	9,5	9,5
Температурный режим III (75/55 °C)	4,0	4,0	3,5	3,5	3,5
1.5 Нормативное сцепление клеевого анкера с бетоном C20/25 без трещин $\tau_{n,urc}$ (H/мм²)	HIT-HY 200-A				
Температурный режим I (40/24 °C)			12		
Температурный режим II (80/50 °C)	10				
Температурный режим III (120/72 °C)	8,5				

Окончание таблицы 19.5

HIT-RE 500 V4 + HZA(-R)	HZA / HZA-R				
HIT- HY 200 - A + HZA (- R)	M12	M16	M20	M24	M27
1.6 Нормативное сцепление клеевого анкера с бетоном $C20/25$ с трещинами $\tau_{n,rc}$ (H/мм ²)	HIT-HY 200-A				
Температурный режим I (40/24 °C)	7,0				
Температурный режим II (80/50 °C)	5,5				
Температурный режим III (120/72 °C)			5,0		

 Таблица 19.6 — **Параметры для расчета прочности при сдвиге для анкеров HIT-RE 500 V4 + HZA(-R) / HIT-HY 200-A + HZA(-R)**

HIT-RE 500 V4 + HZA(-R)		Н	ZA / HZA	-R		
HIT- $HY 200$ - $A + HZA(-R)$	M12	M16	M20	M24	M27	
1. Разрушение	по стали	(п.6.2.1)				
1.1 Нормативное значение силы сопротивления						
анкера по стали без учета дополнительного						
момента $V_{n,s}$ (кН):						
HZA	23	43	67	97	126	
HZA-R	31	55	86	124	-	
1.2 Нормативное значение предельного момента						
для анкера по стали $M^{0}_{n,s}$ (H·м):						
HZA	72	183	357	617	915	
HZA-R	97	234	457	790	-	
1.3 Коэффициент условий групповой работы			1,0			
анкеров λ_s			1,0			
1.4 Коэффициент надежности ууз			1,5			
2. Разрушение от выкалывания б	етона осно	вания за а	анкером (п	.6.2.2)		
2.1 Коэффициент учета глубины анкеровки к			2,0			
2.2 Коэффициент условий работы ууср			1,0			
3. Разрушение от откалыв	ания края	основания	н (п. 6.2.3)			
3.1 Приведенная глубина анкеровки при		(h .12d	`	min(h : 0d	. 200)	
сдвиге l_f (мм)	$\min(h_{ef}; 12d_{nom}) \qquad \qquad \min(h_{ef}; 8d_{nom}; 3d_{nom}; 3d_{nom};$					
3.2 Номинальный диаметр анкера d_{nom} (мм)	12	16	20	25	28	
3.3 Коэффициент условий работы уус			1,0			

Таблица 19.7 – Параметры для расчета деформативности при растяжении для анкеров HIT-RE 500 V4 + HZA(-R) / HIT-HY 200-A + HZA(-R)

HIT-RE 500 V4 + HZA(-R)	HZA / HZA-R								
HIT- $HY 200$ - $A + HZA(-R)$	M12	M16	M20	M24	M27				
1. Смещение анкеров от растягива	ощих усилі	ий в бетоне	без трещи	ин (п. 7.6)					
1.1 Коэффициент податливости									
анкера $c_{N,0}$ (мм/МПа)									
HIT-RE 500 V4									
Температурный режим I (40/24 °C)	0,05	0,06	0,07	0,07	0,08				
Температурный режим II (55/43 °C)	0,06	0,07	0,09	0,09	0,09				
Температурный режим III (75/55 °C)	0,07	0,08	0,09	0,09	0,10				
HIT-HY 200-A									
Температурный режим I (40/24 °C)	0,03	0,04	0,06	0,07	0,08				
Температурный режим II (80/50 °C)	0,05	0,06	0,08	0,10	0,11				
Температурный режим III (120/72 °C)	0,06	0,08	0,10	0,12	0,14				

СТО 071040000966-001-2022 Приложение А

Окончание таблицы 19.7

HIT-RE 500 V4 + HZA(-R)		Н	ZA / HZA	-R	
HIT- $HY 200$ - $A + HZA(-R)$	M12	M16	M20	M24	M27
1.2 Коэффициент податливости					
анкера $c_{N,\infty}$ (мм/МПа)					
HIT-RE 500 V4					
Температурный режим I (40/24 °C)	0,12	0,15	0,17	0,18	0,19
Температурный режим II (55/43 °C)	0,14	0,18	0,20	0,21	0,22
Температурный режим III (75/55 °C)	0,15	0,19	0,22	0,22	0,23
HIT-HY 200-A					
Температурный режим I (40/24 °C)	0,06	0,08	0,13	0,13	0,15
Температурный режим II (80/50 °C)	0,06	0,09	0,14	0,14	0,15
Температурный режим III (120/72 °C)	0,07	0,09	0,14	0,14	0,16
2. Смещение анкеров от растягиваю	щих усили	й в бетоне	с трещина	ми (п. 7.6)	
2.1 Коэффициент податливости					
анкера $c_{N,0}$ (мм/МПа)					
HIT-RE 500 V4					
Температурный режим I (40/24 °C)	0,06	0,10	0,14	0,15	0,16
Температурный режим II (55/43 °C)	0,07	0,12	0,17	0,17	0,19
Температурный режим III (75/55 °C)	0,08	0,13	0,17	0,18	0,20
HIT-HY 200-A					
Температурный режим I (40/24 °C)			0,11		
Температурный режим II (80/50 °C)			0,15		
Температурный режим III (120/72 °C)			0,20		
2.2 Коэффициент податливости					
анкера $c_{N,\infty}$ (мм/МПа)					
HIT-RE 500 V4					
Температурный режим I (40/24 °C)	0,06	0,16	0,16	0,15	0,16
Температурный режим II (55/43 °C)	0,07	0,19	0,19	0,18	0,19
Температурный режим III (75/55 °C)	0,08	0,20	0,20	0,19	0,20
HIT-HY 200-A					
Температурный режим I (40/24 °C)			0,16		
Температурный режим II (80/50 °C)			0,22		
Температурный режим III (120/72 °C)			0,29		

 Таблица 19.8 — Параметры для расчета деформативности при сдвиге для анкеров HIT-RE 500 V4 + HZA(-R) / HIT-HY 200-A + HZA(-R)

HIT-RE 500 V4 + HZA(-R)	HZA / HZA-R								
HIT- HY 200 - A + HZA (- R)	M12	M16	M20	M24	M27				
1. Смещение анкеров от сдвигающих усилий в бетоне с трещинами и без трещин (п. 7.7)									
1.1 Коэффициент жесткости анкера при сдвиге $C_{V,0}$ (кН/мм)	20,0	25,0	25,0	33,3	33,3				
1.2 Коэффициент жесткости анкера при сдвиге $C_{V,\infty}$ (кН/мм)	12,5	16,7	16,7	20,0	20,0				

Допускаемые при расчете условия установки:

HIT-RE 500 V4 + Арматура - основание бетон C20/25-C50/60 с трещинами и без трещин; ударное сверление, ударное сверление (водонаполненные отверстия), алмазное сверление, алмазное сверление с созданием шероховатостей стенок отверстия с помощью инструмента Hilti TE-YRT.

HIT-HY 200-A + Арматура - основание бетон C20/25-C50/60 с трещинами и без трещин; ударное сверление.

Таблица 20.1 – **Предусмотренные температурные режимы для клеевого анкера HIT-RE 500 V4**

Температурный режим	Допустимый диапазон изменения температур, °С	Максимальная длительная температура эксплуатации, °С	Максимальная кратковременная температура при эксплуатации, °C
Температурный режим I	-40 +40	не более 24	40
Температурный режим II	-40 +55	не более 43	55
Температурный режим III	-40 +75	не более 55	75

Таблица 20.2 – **Предусмотренные температурные режимы для клеевого анкера HIT-HY 200-A**

	Допустимый	Максимальная	Максимальная
T	диапазон	длительная	кратковременная
Температурный режим	изменения	температура	температура при
	температур, °С	эксплуатации, °С	эксплуатации, °С
Температурный режим I	-43 +40	не более 24	40
Температурный режим II	-43 +80	не более 50	80
Температурный режим III	-43 +120	не более 72	120

Таблица 20.3 – **Конструктивные требования к размещению анкеров HIT-RE 500 V4** / **HIT-HY 200-A**

<i>HIT-RE 500 V4</i> + <i>Арматура</i>		Арл	матур	a A400	, A5000	С по ГО	OCT 340.	28-2016	
НІТ-НҮ 200-А + Арматура	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Эффективная глубина анкеровки h_{ef} (мм)									
HIT-RE 500 V4	60- 160	60- 200	70- 240	75- 280	80- 320	90- 400	100- 500	112- 560	128- 640
НІТ-НҮ 200-А	60- 160	60- 200	70- 240	75- 280	80- 320	90- 400	100- 500	112- 560	128- 640
Диаметр отверстия для установки анкера d_0 (мм)*	10 / 12*	12 / 14*	14 / 16*	18	20	25	30/32*	35	40
Минимальная толщина основания $h_{\min}(MM)$		+ 30 мм енее 10				h_{ef}	$+2d_{0}$		
1. Бетонно	ое осно	вание	с треі	цинами	и без т	рещин			
1.1 Минимальное краевое расстояние c_{\min} (мм)									
HIT-RE 500 V4	40	45	45	50	50	65	70	75	80
1	40	45	45	50	50	65	70	75	80
1.2 Минимальное межосевое расстояние s_{min} (мм)									
HIT-RE 500 V4	40	50	60	70	80	100	125	140	160
HIT-HY 200-A	40	50	60	70	80	100	125	140	160
*Оба значения диаметра отверстия,	для уст	гановкі	и анкер	оа d_0 мог	гут быты	исполь	зованы		

Таблица 20.4 — **Параметры для расчета прочности при растяжении для анкеров HIT-RE 500 V4 / HIT-HY 200-A**

HIT-RE 500 V4 + Арматура	4	Армап	nypa A	1 <i>400, A</i>	4 <i>500C</i>	по ГО	OCT 34	028-201	16	
НІТ-НҮ 200-А + Арматура	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	<i>Ø25</i>	Ø28	Ø32	
1. Разр	ушени	не по с	гали (і	n.6.1.1))					
1.1 Нормативное сопротивление арматури растяжению $R_{s,n}$ (МПа)					00 для 00 для					
1.2 Нормативное значение силы сопротивления анкера по стали $N_{n,s}$ (кН):	$N_{n,s}=R_{s,n}\pid_{nom}^2/4$									
1.3 Коэффициент надежности γ_{Ns}	1,25									
2. Разрушение от вы	выкалывания бетона основания (п.6.1.3)									
2.1 Коэффициент условий работы <i>_{№с}</i> HIT-RE 500 V4										
Ударное сверление					1,0					
Ударное сверление (водонаполненные отверстия)					1,4					
Ударное сверление бурами ТЕ-CD, ТЕ-YD					1,0				-	
Алмазное сверление		1,	,2				1,4			
Алмазное сверление с созданием шероховатостей стенок отверстия с помощью инструмента Hilti TE-YRT	- 1,0							-		
HIT-HY 200-A					1,0					

Окончание таблицы 20.4

HIT-RE 500 V4 + Apmamypa		Армаг	mypa A	1400, A	1500C	по ГО	CT 34	028-20	16
НІТ-НҮ 200-А + Арматура	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
3. Разрушение	от расі	калыва	ния ос	снован	ия (п. (5.1.4)			
3.1 Критическое краевое расстояние									
при раскалывании $c_{cr,sp}$ (мм)									
$h/h_{ef} \ge 2.0$					$1,0 h_{\epsilon}$	ef.			
$1,3 < h/h_{ef} < 2,0$				4	,6 <i>h</i> _{ef} –	1,8 <i>h</i>			
$h/h_{ef} \leq 1,3$					2,26 h	ef			
3.2 Критическое краевое расстояние					2.0				
при раскалывании s _{cr,sp} (мм)					$2 c_{cr,s}$	р			
3.3 Коэффициент условий работы γ_{Nsp}					см. поз.	2.1			
4. Комбинированное разрушение	е по контакту и выкалыванию бетона основания (п.6.1.5)							.1.5)	
4.1 Номинальный диаметр	8	10	12	14	16	20	25	28	32
анкера d_{nom} (мм)	0	10	12	14	10	20	23	20	32
4.2 Нормативное сцепление клеевого					по табл.	20.5			
анкера с бетоном $C20/25 \tau_n (H/мм^2)$					по таол.	20.3			
4.3 Коэффициент, учитывающий									
фактическую прочность бетона									
основания ψ_c^*									
Бетон С20/25					1,00				
Бетон С25/30					1,02				
Бетон С30/37					1,03				
Бетон С35/45					1,06				
Бетон С40/50	1,07								
Бетон С45/55	1,08								
Бетон С50/60					1,09				
4.4 Коэффициент условий работы γ_{Np}					см. поз.	2.1			

^{*}Для анкеров Hilti HIT-RE 500 V4 при выполнении отверстий алмазным сверлением с созданием шероховатостей стенок отверстия с помощью инструмента Hilti TE-YRT значение коэффициента ψ_c принимается 1,0 независимо от класса бетона.

 Таблица 20.5 — **Нормативное сцепление** τ_n **клеевого анкера HIT-RE 500 V4 / HIT-HY 200-A**

HIT-RE 500 V4 + Apmamypa	Арматура А400, А500С по ГОСТ 34028-2016									
НІТ-НҮ 200-А + Арматура	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	<i>Ø32</i>	
1.1 Нормативное сцепление клеевого	20	210	<i>012</i>	211	210	220	020	220	002	
анкера с бетоном С20/25 без трещин										
при выполнении отверстий ударным										
сверлением, ударным сверлением										
бурами TE-CD, ТЕ-YD, алмазным				HIT	-RE 50	0 V4				
сверлением с созданием										
шероховатостей стенок отверстия с										
помощью инструмента Hilti TE-YRT										
$\tau_{n,urc}$ (H/mm ²)										
Температурный режим I (40/24°C)	10	15	15	15	15	14	14	14	13	
Температурный режим II (55/43°C)	8,5	13	12	12	12	12	11	11	11	
Температурный режим III (75/55 °C)	3,5	5,0	5,0	5,0	4,5	4,5	4,5	4,5	4,5	
1.2 Нормативное сцепление клеевого										
анкера с бетоном С20/25 без трещин				шт	-RE 50	0 1/1				
при выполнении отверстий алмазным				1111	-KL 30	0 / 4				
сверлением $\tau_{n,urc}$ (H/мм ²)										
Температурный режим I (40/24°C)	9,5	9,5	9,5	9,5	9,5	9,5	9,5	10	10	
Температурный режим II (55/43°C)	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	9,0	
Температурный режим III (75/55 °C)	4,0	4,0	4,0	4,0	4,0	4,0	4,5	4,5	4,5	
1.3 Нормативное сцепление клеевого										
анкера с бетоном С20/25 без трещин										
при выполнении отверстий ударным				HIT	-RE 50	0 V4				
сверлением (установка в										
водонаполненные отверстия) $\tau_{n,urc}$										
(H/MM ²)	0.5	1.2	1 12	12	1.0	1.0	1.2	10	1.1	
Температурный режим I (40/24°C)	8,5	13	13	13	12	12	12	12	11	
Температурный режим II (55/43°C)	7,0	11	11	10	10	10	10	9,5	9,5	
Температурный режим III (75/55 °C)	3,0	4,0	4,0	4,0	4,0	4,0	4,0	3,5	3,5	
1.4 Нормативное сцепление клеевого анкера с бетоном C20/25 с трещинами										
при выполнении отверстий ударным										
сверлением, ударным сверлением										
бурами ТЕ-СР, ТЕ-ҮР, алмазным				ніт	-RE 50	0 VA				
сверлением с созданием				1111	-KL 30	0 7 4				
шероховатостей стенок отверстия с										
помощью инструмента Hilti TE-YRT										
$ au_{n,rc}$ (H/MM ²)										
Температурный режим I (40/24°C)	5,5	10	12	12	12	12	11	11	11	
Температурный режим II (55/43°C)	5,0	8,5	10	10	10	10	9,5	9,5	9,0	
Температурный режим III (75/55 °C)	2,0	4,0	4,0	4,0	4,0	3,5	3,5	3,5	3,5	
1.5 Нормативное сцепление клеевого			•	•	,	,	•			
анкера с бетоном С20/25 без трещин				HIT	T-HY 2	00-A				
$\tau_{n,urc} (H/MM^2)$										
Температурный режим I (40/24 °C)					12					
Температурный режим II (80/50 °C)					10					
Температурный режим III (120/72					8,5					
°C)										
1.6 Нормативное сцепление клеевого										
анкера с бетоном С20/25 с трещинами	HIT-HY 200-A									
$\tau_{n,rc}$ (H/MM ²)										
Температурный режим I (40/24 °C)	-	5,0				7,0				
Температурный режим II (80/50 °C)	-	4,0				5,5				

 Таблица 20.6 — **Параметры для расчета прочности при сдвиге для анкеров HIT-RE 500 V4 / HIT-HY 200-A**

HIT-RE 500 V4 + Apmamypa		Арма	тура А	1400, A	500C n	ю ГОС	CT 3402	28-2016	ĺ	
НІТ-НҮ 200-А + Арматура	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32	
1. P	азруш	ение по	стали	(п.6.2.1)					
1.1 Нормативное сопротивление										
арматуры растяжению $R_{s,n}$ (МПа)										
для арматуры класса А400					400					
для арматуры класса А500С					500					
1.2 Нормативное значение силы										
сопротивления анкера по стали без				V = 0	$5 R_{sn} \pi$	d^{2}	Δ			
учета дополнительного момента $V_{n,s}$				v _{n,s} 0	$, \mathcal{I}_{S,n}$	unom /	т			
(кН):										
1.3 Нормативное значение						_				
предельного момента для анкера по	$M_{n,s}^0 = 1,2 R_{s,n} \pi d_{nom}^3 / 32$									
стали $M^{0}_{n,s}$ (H·м):										
1.4 Коэффициент условий групповой					1,0					
работы анкеров λ_s										
1.5 Коэффициент надежности ууз					1,25					
2. Разрушение от выка	алыван	ния бет	она осн	ования	і за ань	сером (п.6.2.2)			
2.1 Коэффициент учета					2,0					
глубины анкеровки <i>k</i>					2,0					
2.2 Коэффициент условий работы					1.0					
<i>ү</i> Vср					1,0					
3. Разрушение о	т отка	лывані	ія края	основ	ания (п	ı. 6.2.3)	1			
3.1 Приведенная глубина анкеровки		r	nin <i>(h</i> +1	124)			min(h	· 8d	300)	
при сдвиге l_f (мм)	$\min(h_{ef}; 12d_{nom}) \qquad \qquad \min(h_{ef}; 8d_{nom}; 300)$, 300)	
3.2 Номинальный диаметр анкера	8 10 12 14 16 20 25 28							32		
d_{nom} (MM)		10	12	17	10	20	23	20	32	
3.3 Коэффициент условий работы γ_{Vc}					1,0					

Таблица 20.7 — **Параметры для расчета деформативности при растяжении для анкеров HIT-RE 500 V4 / HIT-HY 200-A**

HIT-RE 500 V4 + Арматура	P.	1рмат	ypa A	400, A	500C 1	по ГО	CT 340	28-201	6
НІТ-НҮ 200-А + Арматура	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	<i>Ø32</i>
1. Смещение анкеров от растя	гиваю	щих у	силий	в бето	не без	трещи	н (п. 7.0	6)	
1.1 Коэффициент податливости									
анкера <i>с</i> _{N,0} (мм/МПа)									
HIT-RE 500 V4									
Температурный режим I (40/24 °C)	0,04	0,05	0,05	0,06	0,06	0,07	0,07	0,08	0,08
Температурный режим II (55/43 °C)	0,05	0,05	0,06	0,07	0,07	0,09	0,09	0,09	0,10
Температурный режим III (75/55 °C)	0,05	0,06	0,07	0,07	0,08	0,09	0,09	0,10	0,11
HIT-HY 200-A									
Температурный режим I (40/24 °C)	0,02	0,03	0,03	0,04	0,04	0,06	0,07	0,08	0,09
Температурный режим II (80/50 °C)	0,03	0,04	0,05	0,05	0,06	0,08	0,10	0,11	0,12
Температурный режим III (120/72 °C)	0,04	0,05	0,06	0,07	0,08	0,10	0,12	0,14	0,16
1.2 Коэффициент податливости									
анкера $c_{N,\infty}$ (мм/МПа)									
HIT-RE 500 V4									
Температурный режим I (40/24 °C)	0,10	0,11	0,12	0,13	0,15	0,17	0,18	0,19	0,20
Температурный режим II (55/43 °C)	0,12	0,13	0,14	0,16	0,18	0,20	0,21	0,22	0,24
Температурный режим III (75/55 °C)	0,12	0,13	0,15	0,17	0,19	0,22	0,22	0,23	0,25
HIT-HY 200-A									
Температурный режим I (40/24 °C)	0,04	0,05	0,06	0,07	0,08	0,10	0,13	0,15	0,17
Температурный режим II (80/50 °C)	0,04	0,05	0,06	0,07	0,09	0,11	0,14	0,15	0,17
Температурный режим III (120/72 °C)	0,04	0,05	0,07	0,08	0,09	0,11	0,14	0,16	0,18

СТО 071040000966-001-2022 Приложение А

Окончание таблицы 20.7

HIT-RE 500 V4 + Apmamypa	Арматура А400, А500С по ГОСТ 34028-2016					6			
НІТ-НҮ 200-А + Арматура	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	<i>Ø32</i>
2. Смещение анкеров от растя	ягивающих усилий в бетоне с трещинами (п. 7.6)								
2.1 Коэффициент податливости									
анкера $c_{N,0}$ (мм/МПа)									
HIT-RE 500 V4									
Температурный режим I (40/24 °C)	0,02	0,03	0,06	0,08	0,10	0,14	0,15	0,16	0,19
Температурный режим II (55/43 °C)	0,02	0,04	0,07	0,09	0,12	0,17	0,17	0,19	0,22
Температурный режим III (75/55 °C)	0,02	0,04	0,08	0,10	0,13	0,17	0,18	0,20	0,24
HIT-HY 200-A									
Температурный режим I (40/24 °C)	0,11								
Температурный режим II (80/50 °C)	0,15								
Температурный режим III (120/72					0,20				
°C)					0,20				
2.2 Коэффициент податливости									
анкера $c_{N,\infty}$ (мм/МПа)									
HIT-RE 500 V4									
Температурный режим I (40/24 °C)	0,12	0,19	0,06	0,19	0,16	0,16	0,15	0,16	0,19
Температурный режим II (55/43 °C)	0,15	0,23	0,07	0,23	0,19	0,19	0,18	0,19	0,22
Температурный режим III (75/55 °C)	0,16	0,24	0,08	0,24	0,20	0,20	0,19	0,20	0,24
HIT-HY 200-A									
Температурный режим I (40/24 °C)	0,16								
Температурный режим II (80/50 °C)									
Температурный режим III (120/72	0,29								
°C)					0,29				

Таблица 20.8 — **Параметры для расчета деформативности при сдвиге для анкеров HIT-RE 500 V4 / HIT-HY 200-A**

HIT-RE 500 V4 + Арматура HIT-HY 200-A + Арматура		Арматура А400, А500С по ГОСТ 34028-2016							
		Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	<i>Ø32</i>
1. Смещение анкеров от сдвигающ	1. Смещение анкеров от сдвигающих усилий в бетоне с трещинами и без трещин (п. 7.7)							')	
1.1 Коэффициент жесткости анкера при сдвиге $C_{V,0}$ (кН/мм)									
HIT-RE 500 V4	20,0	20,0	20,0	25,0	25,0	25,0	33,3	33,3	33,3
HIT-HY 200-A	16,7	20,0	20,0	25,0	25,0	25,0	33,3	33,3	33,3
1.2 Коэффициент жесткости анкера при сдвиге $C_{V,\infty}$ (кН/мм)									
HIT-RE 500 V4	12,5	12,5	14,3	16,7	16,7	20,0	20,0	20,0	25,0
HIT-HY 200-A	11,1	12,5	14,3	16,7	16,7	20,0	20,0	25,0	25,0

Справочная информация

Таблица 21 — **Характеристическая прочность бетона** $f_{ck,cube}$ по СП РК EN 1992-1-1

	Класс прочности бетона								
Вид сопротивления бетона	C12/	C16/	C20/	C25/	C30/	C35/	C40/	C45/	C50/
•	15	20	25	30	37	45	50	55	60
Характеристическая прочность бетона $f_{ck,cube}$, МПа	15	20	25	30	37	45	50	55	60

ПРИМЕРЫ РАСЧЕТОВ

Пример 1. Проверить несущую способность анкерного крепления при растяжении (см. рис. 1.1).

Дано: Расчетное усилие, передаваемое на анкерное крепление, от веса коммуникаций $N=10~\rm kH$. Подвесной элемент крепится в сжатой зоне плиты с помощью анкера Hilti HKD M12×50 с резьбовой шпилькой M12 класса 4.6. Плита толщиной 200 мм из тяжелого бетона класса по прочности C25/30 с армированием в зоне установки анкера $Ø10~\rm A400$ с шагом $200\times200~\rm mm$. Установка анкеров предусмотрена в зону конструкции без трещин.

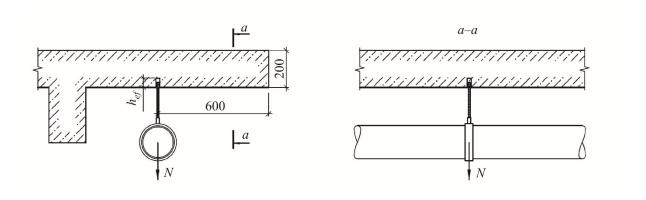


Рисунок 1.1 – Пример 1. Схема анкерного крепления.

1.1 Общие положения. Расчетные усилия

Бетонное основание принимается без трещин по условиям установки.

Конструктивные требования к размещению анкеров НКD по <u>табл. 6.1</u> соблюдены (п. 1): h = 200 мм; $c_1 = 600$ мм; $h > h_{\min} = 100$ мм; $c_1 > c_{\min} = 175$ мм.

Расчетное значение растягивающей силы, действующей на одиночный анкер, определяется в отсутствии дополнительных эксцентриситетов N_{an} =N= $10\kappa H$ (по п. 5.2 СТО 07104000966-001-2022 «Анкерные крепления к бетону с применением анкеров HILTI. Правила расчета и проектирования»)

1.2 Проверка прочности при разрушении по стали (по п.6.1.1 СТО 071040000966-001-2022)

Нормативное значение силы сопротивления анкера при разрушении по стали $N_{n,s}=33.7$ кН (поз.1.1 табл. 6.2)

Коэффициент надежности γ_{Ns} = 2,0 (поз. 1.2 табл. 6.2)

Условие прочности при разрушении по стали $N_{an} \le N_{n,s} / \gamma_{Ns}$ (поз. 1 табл. 6.1 СТО 071040000966-001-2022) — выполнено

1.3 Проверка прочности при разрушении по контакту анкера с основанием (п. 6.1.2 СТО 071040000966-001-2022)

Нормативное значение силы сопротивления анкера по контакту с основанием для анкера HKD M12 \times 50 в <u>табл. 6.2</u> не установлено. Согласно примечанию к <u>табл. 6.2</u>. проверку прочности анкера по контакту с основанием допускается не проводить.

1.4 Проверка прочности при разрушении от выкалывания бетона основания (п. 6.1.3 СТО 071040000966-001-2022)

Предельное растягивающее усилие для одиночного анкера при разрушении от выкалывания бетона основания определяем по формуле 6.9 СТО 071040000966-001-2022.

$$N_{ult,c} = \frac{N_{n,c}^0}{\gamma_{bt} \cdot \gamma_{Nc}} \cdot \frac{A_{c,N}}{A_{c,N}^0} \cdot \psi_{s,N} \cdot \psi_{re,N} \cdot \psi_{ec,N} = \frac{19,56\kappa H}{1,5 \cdot 1} \cdot \frac{22500 \text{mm}^2}{22500 \text{mm}^2} \cdot 1 \cdot 1 \cdot 1 = 13,04\kappa H$$

при
$$N_{n,c}^0=k_1\cdot\sqrt{f_{ck,cube}}\cdot h_{ef}^{1.5}=10$$
, $1\cdot\sqrt{30}\cdot50^{1.5}=19558H=19$, $56\kappa H$

$$h_{ef} = 50$$
 мм (табл. 6.1)

 $f_{ck,cube} = 30 \text{ M}$ Па (по табл. 3.1 СП РК EN 1992-1-1:2004/2011 для бетона С25/30)

$$s_{cr,N} = 3h_{ef} = 3 \cdot 50 \text{ мм} = 150 \text{ мм};$$

$$c_{cr,N} = 1.5 h_{ef} = 1.5 \cdot 50 \text{ мм} = 75 \text{ мм}$$

$$A_{c,N}^0 = s_{cr,N} s_{cr,N}^- = 150 \text{ мм} \cdot 150 \text{ мм} = 22500 \text{ мм}^2$$

$$A_{c,N} = A^0_{c,N}$$

$$\psi_{s,N} = 1,0$$
 при $c \ge c_{cr,N}$

 $\psi_{re,N} = 1,0$ (арматура в зоне установки анкеров расположена с шагом более 150мм)

$$\psi_{ec,N}=1,0$$

$$\gamma_{Nc}$$
=1,0 (поз. 3.2 табл. 6.2)

Условие прочности при разрушении от выкалывания бетона основания

$$N_{an} \le N_{ult,c}$$
 (поз. 3 табл. 6.1 СТО 071040000966-001-2022) — выполнено

$$10 \text{ kH} < 13,04 \text{ kH}$$

1.5 Проверка прочности при разрушении от раскалывания основания (п.6.1.4 CTO 071040000966-001-2022)

Критическое краевое расстояние для случая разрушения от раскалывания бетона основания при растяжении $c_{cr,sp} = 175~$ мм (поз. 4.1 табл. 6.2).

Согласно п. 6.1.4.4 СТО 071040000966-001-2022 проверку прочности при разрушении от раскалывания основания для одиночного анкера при удалении от края $c \ge c_{cr,sp}$ (600 мм > 175 мм) и толщине основания $h \ge 2h_{ef}$ (200 мм > 2·50 мм) допускается не проводить.

Таким образом, несущая способность анкера при действии растягивающей силы по всем предусмотренным согласно п. 6.1 СТО 071040000966-001-2022 видам проверки прочности обеспечена.

Пример 2. Проверить несущую способность анкерного крепления при сдвиге (см. рис. 2.1).

Дано: Расчетное сдвигающее усилие, передаваемое на анкерное крепление, V=8 кН. Крепление осуществляется с помощью четырех анкеров Hilti HSA M12 (h_{nom} =79 мм) к бетонному основанию толщиной 300 мм из тяжелого бетона класса по прочности C20/25. Установка анкеров предусмотрена в зону конструкции без трещин. Опорная пластина крепежной детали толщиной 15 мм с 4 отв. Ø13 мм плотно без зазоров прилегает к основанию.

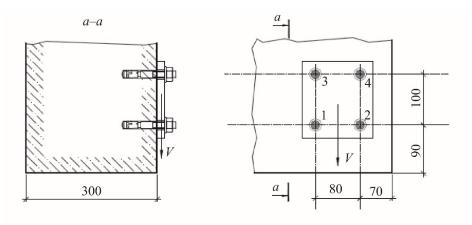


Рисунок 2.1 – Пример 2. Схема анкерного крепления.

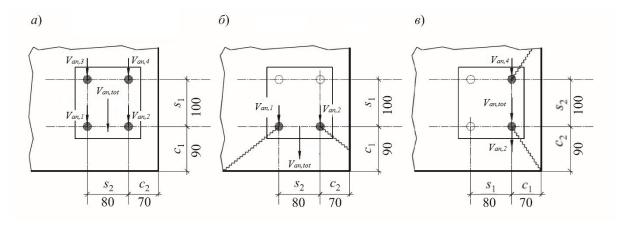
2.1 Общие положения. Расчетные усилия

Бетонное основание принимается без трещин по условиям установки.

Конструктивные требования к размещению анкеров HSA по <u>табл. 3.1</u> соблюдены: h=300 мм; $c_1=90$ мм; $c_2=70$ мм; $s_1=100$ мм, $s_2=80$ мм; $s_2=80$ мм; $s_3=100$ мм;

Дополнительные усилия в анкерах от плеча сдвигающей силы не учитываются согласно требованиям п. 5.5 СТО 071040000966-001-2022.

Расчетные усилия для отдельных анкеров и анкерных групп определяются согласно разделу 5 СТО 071040000966-001-2022 (см. рис. 2.2). Расчет для случая разрушения от откалывания края основания вблизи угла выполняется для двух направлений: в направлении нижней грани и боковой грани (п. 6.2.3.4 СТО 071040000966-001-2022).


2.2 Проверка прочности при разрушении по стали (п. 6.2.1.1 CTO 071040000966-001-2022)

Нормативное значение силы сопротивления анкера при разрушении по стали при сдвиге $V_{n,s}$ =29,5 кH (поз. 1.1 табл. 3.3).

Коэффициент условий групповой работы анкеров λ_s =1 (поз. 1.3 табл. 3.3). Коэффициент надежности γ_{Vs} = 1,25 (поз. 1.4 табл. 3.3).

Условие прочности при разрушении по стали $V_{an,max} \leq V_{ult,s}$ (поз. 1 табл. 6.3 СТО 071040000966-001-2022) — выполнено

$$2\kappa H < \frac{1 \cdot 29,5}{1,25} \kappa H$$
$$2 \kappa H < 23.6 \kappa H$$

a – разрушение по стали и выкалыванию бетона основания за анкером; δ – разрушение от откалывания края основания в направлении нижней грани; в - разрушение от откалывания края основания в направлении боковой грани

Рисунок 2.2 – Пример 2. Распределение расчетных сдвигающих сил в анкерной группе

2.3 Проверка прочности при разрушении бетона $\mathbf{0T}$ выкалывания основания за анкером (п. 6.2.2 СТО 071040000966-001-2022)

Сдвигающие силы в пределах группы имеют одно направление, согласно п. 6.2.2.4 СТО 071040000966-001-2022 проверка прочности выполняется для анкерной группы в целом.

2.3.1 Определение предельного растягивающего усилия при разрушении от выкалывания $N_{ult,c}$ для анкерной группы (п. 6.1.3.1 СТО 071040000966-001-2022)

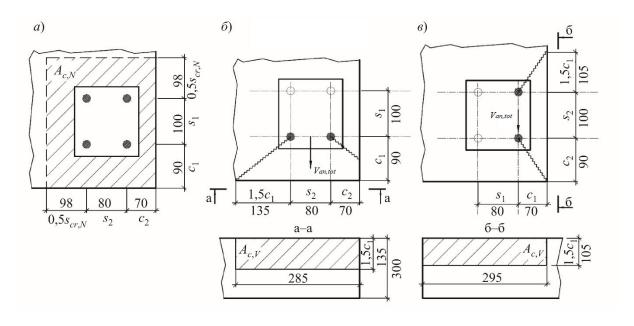
Предельное растягивающее усилие для анкерной группы при разрушении от

представное растя наагондес учлых для анкерной труппы при разрушений от выкалывания бетона основания по формуле 6.9 СТО 071040000966-001-2022:
$$N_{ult,c} = \frac{N_{n,c}^0}{\gamma_{bt} \cdot \gamma_{Nc}} \cdot \frac{A_{c,N}}{A_{c,N}^0} \cdot \psi_{s,N} \cdot \psi_{re,N} \cdot \psi_{ec,N} = \frac{26,46\kappa H}{1,5 \cdot 1} \cdot \frac{71156m M^2}{38025m M^2} \cdot 0,92 \cdot 1 \cdot 1 = 30,4\kappa H$$
 при $N_{n,c}^0 = k_1 \cdot \sqrt{f_{ck,cube}} \cdot h_{ef}^{1.5} = 10,1 \cdot \sqrt{25} \cdot 65^{1.5} = 26464 H = 26,46\kappa H$
$$h_{ef} = 65 \text{ мм} \left(\frac{136 \pi}{100} \cdot \frac{3.2}{100} \right);$$
 $f_{ck,cube} = 25 \text{ МПа} \left(\frac{1}{100} \text{ табл. } 3.1 \text{ СП РК EN 1992-1-1:2004/2011 для бетона C20/25} \right);$ $s_{cr,N} = 3h_{ef} = 3 \cdot 65 \text{ мм} = 195 \text{ мм};$ $c_{cr,N} = 1,5h_{ef} = 1,5 \cdot 65 \text{ мм} = 97,5 \text{ мм};$ $A_{c,N}^0 = s_{cr,N} s_{cr,N} = 195 \text{ мм} \cdot 195 \text{ мм} = 38025 \text{ мм}^2;$ $A_{c,N} = (70 \text{ мм} + 80 \text{ мм} + 97,5 \text{ мм}) \cdot (90 \text{ мм} + 100 \text{ мм} + 97,5 \text{ мм}) = 71156 \text{ мм}^2 - \text{см. рис. } 2.3(a);$ $\psi_{s,N} = 0,7 + 0,3 \frac{c}{c_{cr,N}} = 0,7 + 0,3 \frac{70 \text{ мм}}{97,5 \text{ мм}} = 0,915 \leq 1,0;$ $\psi_{re,N} = 1,0 \qquad \text{(при отсутствии данных по фактическому армированию);}$ $\psi_{ec,N} = 1,0;$

 $y_{bt} = 1,5;$

 γ_{Nc} = 1,0 по п. 6.2.2.3 СТО 071040000966-001-2022.

2.3.2 Проверка прочности от выкалывания бетона основания при сдвиге


Предельное сдвигающее усилие для анкерной группы при разрушении от выкалывания бетона основания за анкером по формуле 6.39 CTO 071040000966-001-2022:

$$V_{ult,cp} = k \cdot \frac{N_{ult,c}}{\gamma_{Vcp}} = 2.0 \cdot \frac{30.4}{1.0} \kappa H = 60.8 \kappa H$$

где $N_{ult,c}$ – см. п. 2.3.1 рассматриваемого примера; k=2,0 (поз. 2.1 табл. 3.3), $\gamma_{Vcp}=1,0$ по поз. 2.2 табл. 3.3.

Условие прочности при разрушении от выкалывания бетона основания $V_{an,tot} \leq V_{ull,cp}$ (поз. 3 табл. 6.3 СТО 071040000966-001-2022) — выполнено

$$8 \text{ kH} < 60.8 \text{ kH}$$

a — фактическая площадь $A_{c,V}$ к расчету выкалывания бетона основания за анкером; δ — фактическая площадь $A_{c,V}$ к расчету при разрушении от откалывания края основания в направлении нижней грани; ϵ — фактическая площадь $A_{c,V}$ к расчету при разрушении от откалывания края основания в направлении боковой грани

Рисунок 2.3 – Пример 2. Фактическая площадь основания условной призмы выкалывания

2.4 Проверка прочности при разрушении от откалывания края основания (п.6.2.3 CTO 071040000966-001-2022)

2.4.1 Разрушение от откалывания края основания в направлении нижней грани

Рассматривается схема разрушения по рис. 2.2 (б). Расчетное усилие $V_{an,tot} = 8$ кH, $\alpha_v = 0^\circ$, $c_1 = 90$ мм, $c_2 = 70$ мм.

Предельное сдвигающее усилие для анкерной группы при разрушении от откалывания края основания по формуле 6.43 СТО 071040000966-001-2022:

$$V_{ult,c} = \frac{V_{n,c}^{0}}{\gamma_{bt} \cdot \gamma_{Vc}} \cdot \frac{A_{c,V}}{A_{c,V}^{0}} \cdot \psi_{s,V} \cdot \psi_{h,V} \cdot \psi_{\alpha,V} \cdot \psi_{ec,V} \cdot \psi_{re,V}$$

$$\beta = 0.1 \left(\frac{d_{nom}}{c_1} \right)^{0.2} = 0.1 \cdot \left(\frac{12}{90} \right)^{0.2} = 0.067;$$

$$A_{c,V}^0 = 3c_1 \cdot 1,5c_1 = 4,5 \cdot c_1^2 = 4,5 \cdot (90 \,\mathrm{mm})^2 = 36450 \,\mathrm{mm}^2$$
; $A_{c,V} = 1,5 \cdot 90 \,\mathrm{mm} \cdot (1,5 \cdot 90 \,\mathrm{mm} + 80 \,\mathrm{mm} + 70 \,\mathrm{mm}) = 38475 \,\mathrm{mm}^2 - \mathrm{cm}$. рис. 2.3 (б) $\psi_{s,V} = 0,7 + 0,3 \cdot \frac{c_2}{1,5 \cdot c_1} = 0,7 + 0,3 \cdot \frac{70 \,\mathrm{mm}}{1,5 \cdot 90 \,\mathrm{mm}} = 0,855$;

 $\Psi_{h,V} = 1,0 \; (\text{при } h > 1,5c_1) \; ;$

 $\Psi_{\alpha,V}$ = 1,0 (при α_V = 0°);

 $\Psi_{ec,V} = 1,0$

 $\Psi_{re,V} = 1,0$ – при отсутствии данных по фактическому армированию конструкции

 $\gamma_{Vc} = 1,0 \; (\underline{\text{поз. 3.3 табл. 3.3}})$

Условие прочности при разрушении от откалывания края основания в направлении нижней грани $V_{an,tot} \le V_{ult,c}$ (поз. 3 табл. 6.3 СТО 071040000966-001-2022) — выполнено

$$8 \text{ kH} < 10.1 \text{ kH}$$

2.4.2 Разрушение от откалывания края основания в направлении боковой грани

Рассматривается схема разрушения по рис. 2.2 (в). Расчетное усилие $V_{an,tot}=4$ кH, $\alpha_v=90^\circ,\,c_1=70$ мм, $c_2=90$ мм.

Аналогично п. 2.4.1 рассматриваемого примера предельное сдвигающее усилие для анкерной группы при разрушении от откалывания края основания:

$$V_{ult,c} = \frac{V_{n,c}^0}{\gamma_{bt} \cdot \gamma_{Vc}} \cdot \frac{A_{c,V}}{A_{c,V}^0} \cdot \psi_{s,V} \cdot \psi_{h,V} \cdot \psi_{\alpha,V} \cdot \psi_{ec,V} \cdot \psi_{re,V}$$

$$V_{ult,c} = \frac{11,8\kappa H}{1,5\cdot 1,0} \cdot \frac{30975 \text{мм}^2}{22050 \text{мм}^2} \cdot 0,957\cdot 1,0\cdot 2,5\cdot 1,0\cdot 1,0 = 26,4\kappa H$$
 при $V_{n,c}^0 = k_3 \cdot (d_{nom})^\alpha \cdot \left(l_f\right)^\beta \cdot \sqrt{f_{ck,cube}} \cdot c_1^{1,5} = 2,4\cdot 12^{0,096} \cdot 65^{0,067} \cdot \sqrt{25} \cdot 70^{1,5} = 11,8\kappa H$
$$\alpha = 0,1 \left(\frac{l_f}{c_1}\right)^{0,5} = 0,1\cdot \left(\frac{65}{70}\right)^{0,5} = 0,096;$$

$$\beta = 0,1 \left(\frac{d_{nom}}{c_1}\right)^{0,2} = 0,1\cdot \left(\frac{12}{70}\right)^{0,2} = 0,07;$$

СТО 071040000966-001-2022 Приложение А

$$\begin{split} &A_{c,V}^0 = 3 \cdot c_1 \cdot 1,5 \cdot c_1 = 4,5 \cdot c_1^2 = 4,5 \cdot (70 \text{ мм})^2 = 22050 \text{ мм}^2; \\ &A_{c,V} = 1,5 \cdot 70 \text{ мм} \cdot (1,5 \cdot 70 \text{ мм} + 100 \text{ мм} + 90 \text{ мм}) = 30975 \text{ мм}^2 - \text{см. рис. } 2.3 \text{ (e)}; \\ &\psi_{s,V} = 0,7 + 0,3 \frac{c_2}{1,5 \cdot c_1} = 0,7 + 0,3 \cdot \frac{90 \text{ мм}}{1,5 \cdot 70 \text{ мм}} = 0,957; \\ &\psi_{h,V} = 1,0 \text{ (при } h > 1,5c_1); \\ &\psi_{ec,V} = 1,0; \\ &\psi_{re,V} = 1,0; \\ &\psi_{re,V} = 1,0; \\ &\psi_{\alpha,V} = \sqrt{\frac{1}{(\cos\alpha_V)^2 + (0,4\sin\alpha_V)^2}} = \sqrt{\frac{1}{(0,4 \cdot 1)^2}} = 2,5 \text{ (при } \alpha_V = 90^\circ). \end{split}$$

Условие прочности при разрушении от откалывания края основания в направлении боковой грани $V_{an,tot} \le V_{ult,c}$ (поз. 3 табл. 6.3 СТО 071040000966-001-2022) — выполнено

$$4 \text{ kH} < 26.4 \text{ kH}$$

Таким образом, несущая способность анкерного крепления при действии сдвигающей силы по всем предусмотренным согласно п. 6.2 CTO 071040000966-001-2022 видам проверки прочности обеспечена.

Пример 3. Проверить несущую способность анкерного крепления при комбинированном действии усилий (см. рис. 3.1).

Дано: Металлическая деталь крепится к верхнему участку железобетонной стены с помощью четырех клеевых анкеров Hilti HIT-RE 500 V4 со шпилькой HAS-U-5.8 M12 ($h_{ef}=110~\mathrm{mm}$). Стена толщиной 200 мм из тяжелого бетона класса по прочности C25/30 с армированием Ø 12 A400 с шагом 200×200 мм. Опорная пластина крепежной детали толщиной 20 мм с 4 отв. Ø 14 мм прилегает к основанию с зазором 15 мм для возможности дальнейшего выравнивания пластины по уровню. Внешние расчетные усилия, действующие в анкерном креплении: сдвигающая сила $V=4~\mathrm{kH}$, изгибающий момент $M=2~\mathrm{kH}\cdot\mathrm{m}$. Температурный режим эксплуатации от минус 43 до плюс 40 °C. Сверление ударное.

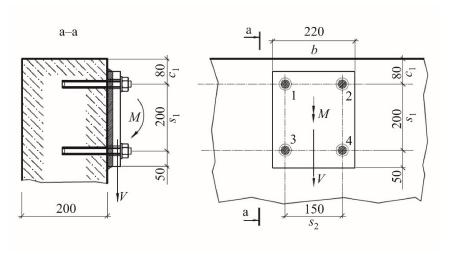


Рисунок 3.1 – Пример 3. Схема анкерного крепления

3.1 Общие положения. Расчетные усилия

Бетонное основание принимается для общего случая с трещинами.

Конструктивные требования к размещению анкеров Hilti HIT-RE 500 V4 + HAS-U-5.8 M12 по табл. 17.4 соблюдены: h = 200 мм; $c_1 = 80$ мм; $s_2 = 150$ мм; $h > h_{\min} = 140$ мм; $c > c_{\min} = 45$ мм; $s > s_{\min} = 60$ мм.

Эксплуатация анкерного крепления осуществляется при температурном режиме I согласно табл. 17.1.

Расчетные усилия для отдельных анкеров и анкерных групп определяются согласно разделу 5 СТО 071040000966-001-2022. Растягивающие усилия в анкерах определяются согласно п. 5.10 СТО 071040000966-001-2022. Расчетная схема усилий, действующих в анкерном креплении при растяжении представлена на рис. 3.2.

Усилие $N_{an1,2}$ при этом определяется из уравнения

$$N_{an,1,2} = \frac{M}{s_1} = \frac{2000 \text{kH}}{200 \text{mm}} = 10 \text{kH}$$

Расчетное значение растягивающей силы для одиночного анкера и анкерной группы (два анкера крайнего ряда) соответственно:

$$N_{an,max} = \frac{N_{an,1,2}}{2} = \frac{10 \text{ kH}}{2} = 5 \text{ kH};$$

 $N_{an,tot} = N_{an,1,2} = 5 \text{ kH};$

Сдвигающие усилия в анкерах определяются согласно п. 5.14 СТО 071040000966-001-2022. Для случая разрушения по стали и выкалыванию бетона за анкером принимается равномерное распределение сдвигающих усилий между четырьмя анкерами: $V_{an,tot} = V = 4$ кH, $V_{an,max} = V/4 = 1$ кH. Согласно п. 5.14 СТО 071040000966-001-2022 суммарное усилие в анкерной группе при расчетах для случая разрушения от откалывания края $V_{an,tot} = 0$ (сдвигающая сила действует в противоположную от края сторону).

При расчете на сдвиг учитывается возникновение дополнительного плеча сдвигающей силы согласно п. 5.3 по формуле 5.1 СТО 071040000966-001-2022:

$$l_s = \frac{a_3 + e_l}{\alpha_M} = \frac{\frac{12 \text{ MM}}{2} + \left(15 \text{ MM} + \frac{20 \text{ MM}}{2}\right)}{1,0} = 31 \text{ MM}.$$

3.2 Определение расчетных сил сопротивления при растяжении (п. 6.1 СТО 071040000966-001-2022)

3.2.1 Разрушение по стали (п. 6.1.1 СТО 071040000966-001-2022)

Нормативное значение силы сопротивления анкера при разрушении по стали $N_{n,s}=42,2$ кН (поз. 1.1 табл. 17.5)

Коэффициент надежности $\gamma_{Ns} = 1,5$ (поз. 1.2 табл. 17.5).

Предельное растягивающее усилие из условий прочности по стали

$$N_{ult,s} = \frac{N_{n,s}}{\gamma_{Ns}} = \frac{42.2}{1.5} = 28.13 \text{ kH}.$$

3.2.2 Разрушение от выкалывания бетона основания (п. 6.1.3 СТО 071040000966-001-2022)

Предельное растягивающее усилие из условия прочности при выкалывании бетона основания для анкерной группы из двух крайних анкеров по формуле 6.9 СТО 071040000966-001-2022:

где:
$$N_{n,c}^0 = k_1 \cdot \sqrt{f_{ck,cube}} \cdot h_{ef}^{1.5} = 7,2 \cdot \sqrt{30} \cdot 110^{1,5} = 45497 \; H = 45,5 \; кH$$
 при $h_{ef} = 110 \; \mathrm{MM};$

 $f_{ck,cube} = 30 \text{ M}$ Па (по табл. 3.1 СП РК EN 1992-1-1:2004/2011 для бетона С25/30);

$$s_{cr,N}=3$$
 $h_{ef}=3\cdot110$ $mm=330$ $mm;$ $c_{cr,N}=1.5$ $h_{ef}=1.5\cdot110$ $mm=165$ $mm;$

$$A_{c,N}^0 = s_{cr,N} \cdot s_{cr,N} = 330 \text{ мм} \cdot 330 \text{ мм} = 108900 \text{ мм}^2;$$

$$A_{c,N} = (0.5s_{cr,N} + s_2 + 0.5s_{cr,N}) \cdot (c_1 + 0.5s_{cr,N}) = 117600 \text{ мм}^2;$$

$$\psi_{s,N} = 0.7 + 0.3 \cdot \frac{c}{c_{cr,N}} = 0.7 + 0.3 \cdot \frac{80 \text{ MM}}{165 \text{ MM}} = 0.845;$$

 $\psi_{re,N}=1$,0 (арматура в зоне установки анкеров расположена с шагом более 150 мм); $\psi_{ec,N}=1$,0;

 $\gamma_{Nc} = 1,0 (\underline{\text{поз. } 2.1 \text{ табл. } 17.5}).$

3.2.3 Разрушение от раскалывания основания (п. 6.1.4 CTO 071040000966-001-2022)

Критическое краевое расстояние для случая разрушения от раскалывания бетона основания при растяжении для клеевого анкера HIT-RE 500 V4 согласно $\underline{\text{поз. 3.1}}$ табл. 17.5:

 $c_{cr,sp} =$ 4,6 $h_{ef} -$ 1,8 h = 4,6 · 110 мм - 1,8 · 200мм = 146 мм при $h / h_{ef} =$ 1,81.

Согласно п. 6.1.4.4 СТО 071040000966-001-2022 при $c_1 < c_{cr,sp}$ (80 мм < 146 мм) проверка прочности при разрушении от раскалывания обязательна.

Предельное растягивающее усилие для анкерной группы из двух крайних анкеров при разрушении от раскалывания основания по формуле 6.20 СТО 071040000966-001-2022:

$$N_{ult,sp} = \frac{N_{n,c}^{sp}}{\gamma_{bt} \cdot \gamma_{Nsp}} \cdot \psi_{h,sp} = \frac{46,06 \ \kappa H}{1,5 \cdot 1,0} \cdot 1,27 = 39 \ \kappa H$$
 где: $N_{n,c}^{sp} = \frac{N_{n,c}^{0}}{\gamma_{bt} \cdot \gamma_{Nc}} \cdot \frac{A_{c,sp}}{A_{c,sp}^{0}} \cdot \psi_{s,N} \cdot \psi_{re,N} \cdot \psi_{ec,N} = \frac{45,5 \ \kappa H}{1,0 \cdot 1,0} \cdot \frac{99892 \ mm^{2}}{85264 \ mm^{2}} \cdot 0,864 \cdot 1 \cdot 1 = 46,06 \ \kappa H;$ при $N_{n,c}^{0} = 45,5 \ \kappa H$ (см. п. 3.2.2 рассматриваемого примера);
$$A_{c,sp}^{0} = s_{cr,sp} \cdot s_{cr,sp} = 292 \cdot 292 = 85264 \text{мm}^{2};$$
 при $s_{cr,sp} = 2 \cdot c_{cr,sp} = 2 \cdot 146 \ \text{мм} = 292 \ \text{мм};$
$$A_{c,sp} = \left(0,5s_{cr,sp} + s_{2} + 0,5s_{cr,sp}\right) \cdot \left(c_{1} + 0,5s_{cr,sp}\right) = 99892 \ mm^{2};$$

$$\psi_{s,N} = 0,7 + 0,3 \cdot \frac{c}{c_{cr,sp}} = 0,7 + 0,3 \cdot \frac{80 \ mm}{146 \ mm} = 0,864;$$

$$\psi_{re,N} = 1,0;$$

$$\psi_{ec,N} = 1,0;$$

$$\psi_{h,sp} = \left(\frac{h}{h_{\min}}\right)^{2/3} = \left(\frac{200 \ mm}{140 \ mm}\right)^{2/3} = 1,27;$$

 $\gamma_{Nsp} = 1,0 \ (\underline{\text{поз. } 3.3 \text{ табл. } 17.5})$ для анкеров на основе HIT-RE 500 V4.

3.2.4 Комбинированное разрушение по контакту и выкалыванию бетона основания (п. 6.1.5 СТО 071040000966-001-2022)

Предельное растягивающее усилие для анкерной группы из двух крайних анкеров при разрушении по контакту и выкалыванию бетона основания по формуле (6.24):

$$\begin{split} N_{ult,p} &= \frac{N_{n,p}^{0}}{\gamma_{bt} \cdot \gamma_{Np}} \cdot \frac{A_{p,N}}{A_{p,N}^{0}} \cdot \psi_{c} \cdot \psi_{s,N} \cdot \psi_{re,N} \cdot \psi_{ec,N} \cdot \psi_{g,Np} = \\ &= \frac{45,6 \ \kappa H}{1,5 \cdot 1,0} \cdot \frac{117600 \ \text{MM}^{2}}{108900 \ \text{MM}^{2}} \cdot 1,02 \cdot 0,845 \cdot 1 \cdot 1 \cdot 1 = 28,3 \ \kappa H \end{split}$$

где:
$$N_{n,p}^0 = \pi \cdot d_{nom} \cdot h_{ef} \cdot \tau_n = 3.14 \cdot 12 \cdot 110 \cdot 11 = 45616 \ H = 45.6 \ \kappa H;$$
 при $d_{nom} = 12$ мм (поз. 4.1 табл. 17.5);
$$\tau_n = \tau_{n,rc} = 11 \ \frac{H}{M^2} \left(\text{поз. } 1.4 \text{ табл. } 17.6 \right);$$

$$\tau_{n,urc} = 18 \ \frac{H}{M^2} \left(\text{поз. } 1.1 \text{ табл. } 17.6 \right);$$

 $s_{cr,Np}=7$,3 · d_{nom} · $\sqrt{ au_{n,urc}}=7$,3 · 12 · $\sqrt{18}=371$,7 мм, но не более 3 $h_{ef}=330$ мм, поэтому окончательно принимаем $s_{cr,Np}=330$ мм;

$$\begin{split} c_{cr,Np} &= \frac{s_{cr,Np}}{2} = \frac{330}{2} = 165 \text{ мм}; \\ A_{p,N}^0 &= s_{cr,Np} \cdot s_{cr,Np} = 330 \cdot 330 = 108900 \text{ мм}^2; \\ A_{p,N} &= (0.5s_{cr,Np} + s_2 + 0.5s_{cr,Np}) \cdot (c_1 + 0.5s_{cr,Np}) = \\ &= (0.5 \cdot 330 + 150 + 0.5 \cdot 330) \cdot (80 + 0.5 \cdot 330) \\ &= 117600 \text{ мм}^2; \\ \psi_c &= 1.02 \text{ для бетона C25/30 (} \frac{103.4.3 \text{ табл. } 17.5); \\ \psi_{s,N} &= 0.7 + 0.3 \cdot \frac{c}{c_{cr,sp}} = 0.7 + 0.3 \cdot \frac{80 \text{ мм}}{165 \text{ мм}} = 0.845; \\ \psi_{re,N} &= 1.0; \\ \psi_{ec,N} &= 1.0; \\ \psi_{g,Np} &= \sqrt{n} - (\sqrt{n} - 1) \cdot \left(\frac{d_{nom} \cdot \tau_n \cdot \psi_c}{k_2 \cdot \sqrt{h_{ef} \cdot f_{ck,cube}}}\right)^{1.5} = \sqrt{2} - (\sqrt{2} - 1) \cdot \left(\frac{12 \text{ мм} \cdot 11 \frac{H}{\text{ мм}^2} \cdot 1.02}{2.3 \cdot \sqrt{110 \text{ мм} \cdot 30 \text{ MHIa}}}\right)^{1.5} = 0.988 \leq 1, \text{ поэтому принимаем } \psi_{g,Np}^0 = 1.0 \\ \psi_{g,Np} &= \psi_{g,Np}^0 - \left(\frac{s}{s_{cr,Np}}\right)^{0.5} \cdot (\psi_{g,Np}^0 - 1) = 1.0 - \left(\frac{200 \text{ мм}}{330 \text{ мм}}\right)^{0.5} \cdot (1.0 - 1) = 1.0; \end{split}$$

 γ_{Np} = 1,0 (поз. 4.4 табл. 17.5) для анкеров на основе HIT-RE 500 V4.

3.3 Определение расчетных сил сопротивления при сдвиге (п. 6.2 СТО 071040000966-001-2022)

3.3.1 Разрушение по стали (п.6.2.1 СТО 071040000966-001-2022)

Нормативное значение силы сопротивления анкера по стали при сдвиге с плечом силы по формуле 6.35 СТО 071040000966-001-2022:

$$V_{nm,s}=rac{M_{n,s}}{l_s}=rac{54,3\ H\cdot ext{м}}{0,031\ ext{ } ext{м}}=1751,6\ H=1,75\kappa H;$$
 при $M_{n,s}=M_{n,s}^0\cdot \left(1-rac{N_{an}}{N_{ult,s}}
ight)=66\ H\cdot ext{м}\cdot \left(1-rac{5,0\ \kappa H}{28,13\ \kappa H}
ight)=54,3\ H\cdot ext{м};$ $M_{n,s}^0=66\ ext{ } H\cdot ext{м}$ (поз. 1.2 табл. 17.7).

Предельное сдвигающее усилие для анкера при разрушении по стали:

$$V_{ult,s} = \frac{V_{nm,s}}{\gamma_{Vs}} = \frac{1,75}{1,25} = 1,4 \text{ kH},$$

где $\gamma_{Vs} = 1,25 (\underline{\text{поз. } 1.4 \text{ табл. } 17.7}).$

3.3.2 Разрушение от выкалывания бетона основания за анкером (п.6.2.2 СТО 071040000966-001-2022)

Сдвигающие силы в пределах группы имеют одно направление, согласно п. 6.2.2.4 СТО 071040000966-001-2022 проверка прочности выполняется для анкерной группы в целом.

Предельное сдвигающее усилие для анкерной группы из четырех анкеров при разрушении от выкалывания бетона основания за анкером по формуле 6.39 СТО 071040000966-001-2022:

$$V_{ult,cp} = k \cdot \frac{N_{ult,p}}{\gamma_{V,cp}} = 2.0 \cdot \frac{50.3 \ \kappa H}{1.0} = 100.6 \ \kappa H$$

при k = 2 (поз. 2.1 табл. 17.7).

$$\begin{split} N_{ult,c} &= \frac{N_{n,c}^{0}}{\gamma_{bt} \cdot \gamma_{Np}} \cdot \frac{A_{c,N}}{A_{p,N}^{0}} \cdot \psi_{s,N} \cdot \psi_{re,N} \cdot \psi_{ec,N} \cdot \psi_{g,Np} = \\ &= \frac{45,5 \ \kappa H}{1,5 \cdot 1,0} \cdot \frac{213600 \ \text{MM}^{2}}{108900 \ \text{MM}^{2}} \cdot 0,845 \cdot 1 \cdot 1 \cdot 1 = 50,3 \ \kappa H \end{split}$$

где:

$$A_{c,N} = (0.5s_{cr,N} + s_2 + 0.5s_{cr,N}) \cdot (c_1 + s_1 + 0.5s_{cr,N}) =$$

$$= (0.5 \cdot 330 + 150 + 0.5 \cdot 330) \cdot (80 + 200 + 0.5 \cdot 330)$$

$$= 213600 \text{ mm}^2;$$

для группы из четырех анкеров;

$$\psi_{g,Np}^{0} = \sqrt{n} - \left(\sqrt{n} - 1\right) \cdot \left(\frac{d_{nom} \cdot \tau_n \cdot \psi_c}{k_2 \cdot \sqrt{h_{ef} \cdot f_{ck,cube}}}\right)^{1,5} = \sqrt{4} - \left(\sqrt{4} - 1\right) \cdot \left(\frac{12 \text{ мм} \cdot 11 \frac{H}{\text{мм}^2} \cdot 1,02}{2,3 \cdot \sqrt{110 \text{ мм} \cdot 30 \text{ MIIa}}}\right)^{1,5} = 0,97 \le 1.0,$$
 поэтому принимаем $\psi_{g,Np}^{0} = 1.0$

$$\psi_{g,Np} = \psi_{g,Np}^{0} - \left(\frac{s}{s_{cr,Np}}\right)^{0,5} \cdot \left(\psi_{g,Np}^{0} - 1\right) = 1,0 - \left(\frac{200 \text{ мм}}{330 \text{ мм}}\right)^{0,5} \cdot (1,0-1) = 1,0;$$

остальные величины по п. 3.2.2 рассматриваемого примера; $\gamma_{Vcp} = 1,0$ (поз. 2.2 табл. 17.7).

3.4 Проверка прочности при совместном воздействии усилий растяжения и сдвига (п. 6.3 СТО 071040000966-001-2022)

Сводные данные по расчетным усилиям и предельным усилиям, а также их частным отношениям β по предусмотренным механизмам разрушения — см. табл. 19.1—19.2.

СТО 071040000966-001-2022 Приложение А

Таблица 19.1

No	Механизм разрушения	Расчетное усилие	Предельное усилие	$\beta = N_{an} / N_{ult}$
п.п.	при растяжении	N_{an}	N_{ult}	P Ivan / Ivuit
1	разрушение по стали	$N_{an,max} = 5$ кН	$N_{ult,s} = 28,13 \text{ кH}$	0,18
2	разрушение от выкалывания бетона основания	$N_{an,tot}=$ 10 кН	$N_{ult,c} = 27,7$ кН	0,36
3	комбинированное разрушение по контакту анкера с основанием и выкалыванию бетона основания	$N_{an,tot}=$ 10 кН	$N_{ult,p} = 28,3 \text{ кH}$	0,35
4	разрушение от раскалывания основания	$N_{an,tot}=$ 10 кН	$N_{ult,sp} = 39 \text{ кH}$	0,26

Таблица 19.2

№ п.п.	Механизм разрушения при сдвиге	Расчетное усилие V_{an}	Предельное усилие V_{ult}	$\beta = V_{an} / V_{ult}$
1	разрушение по стали	$V_{an,max} = 1 \text{ kH}$	$V_{ult,s} = 1,4 \text{ кH}$	0,71
2	разрушение от выкалывания бетона основания за анкером	$V_{an,tot}=$ 4 кН	<u>V_{ult,cp}</u> = 100,6 кН	0,04
3	разрушение от откалывания края основания	$V_{an,tot}=0$	_	0

Откуда коэффициенты $\beta_N = 0.4$; $\beta_V = 0.71$ (максимальные значения).

Условия прочности (6.53), (6.54), (6.58) для анкеров при совместном воздействии растяжения и сдвига выполнены:

$$\beta_N = 0.36 < 1.0$$
,
 $\beta_V = 0.71 < 1.0$,
 $\beta_N + \beta_V = 1.07 < 1.2$

Таким образом, несущая способность анкерного крепления при комбинированном действии усилий по всем предусмотренным согласно п. 6.3 видам проверки прочности обеспечена.