

HST2 V3 Bolzenanker

Technisches Produktdatenblatt Stahl zu Beton

Aktualisierung: 24. Dez.

HST2 V3 Bolzenanker

Hochleistungs-Bolzenanker

Dübelausführung

HST2 V3 HST2 V3 BW (M8-M16)

Vorteile

- Geeignet für gerissenen und ungerissenen Beton C20/25 bis C50/60
- Geeignet für seismische Bemessungen mit ETA C1/C2-Zulassung
- Variable Verankerungstiefe für größere Lastwerte oder geringere Rand- und Achsabstände – je nach Anwendungsfall
- Geringe Verankerungstiefen
- Vollständige Bemessungsflexibilität durch variable Verankerungstiefe
- Schnelle und zuverlässige Installation dank Option in der ETA, das Bohrloch nicht zu reinigen, und aufgrund des automatischen Drehmomenttools (AT-Modul)
- Produkt- und Längenkennzeichnung erleichtert Qualitätskontrolle und Inspektion
- HST2-F geeignet für den Einsatz im Freien mit variabler Lebensdauer (z. B. C3 für 25 Jahre)

HST2-F V3 (M8-M16)

HST2-R V3 (M8-M16)

Untergrundmaterial

Beton (ungerissen) (

Beton (gerissen)

Lastbedingungen

Sonstige Informationen

Statisch/ quasistatisch

Seismisch C1/C2

Feuerbeständigkeit

Bohren, Reinigen, Setzen

Hammer gebohrte Löcher (ohne Reinigung)

Diamant gebohrte Löcher

Schlagschrauber mit adaptivem Drehmomentmodul

Variable Verankerungstiefe

PROFIS Engineering Software

Handbuch der Befestigungstechnik

Zulassungen / Prüfberichte und Bedienungsanleitungen

Zulassungen / Zertifikate

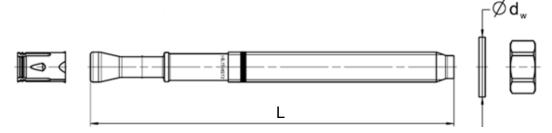
Genehmigungsnr.	Anwendung / Lastbedingungen	Behörde / Labor	Ausstellungsdatum		
ETA-21/0480	HST2(-F,-R) V3 Statisch und quasistatisch / Seismisch / Feuer	DIBt Berlin	31-10-2024		
ETA-21/0510	HST2-F V3 Variable Lebensdauer bis zu 50 Jahre Statisch und quasistatisch / Brand	DIBt Berlin	14-11-2024		

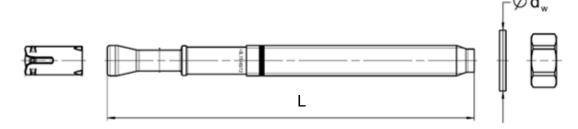
Die Montageanleitung kann über den Link in der Montagehinweistabelle oder über die Produktwebsite auf Hilti.de eingesehen werden.

Bedienungsanleitung (IFU)

Dübelgröße	M8	M10	M12	M16					
HST2 V3	HST2 V3 M8	HST2 V3 M10	HST2 V3 M12	HST2 V3 M16					
HST2-F V3	HST2-F V3 M8	HST2-F V3 M10	HST2-F V3 M12	HST2-F V3 M16					
HST2-R V3	HST2-R V3 M8	HST2-R V3 M10	HST2-R V3 M12	HST2-R V3 M16					
Verfüllset	<u>Verfüllset</u>								

Link zur Hilti-Webseite


HST2 V3	HST2-F V3	HST2-R V3	HST2 V3 KG


Sonderabmessungen der Befestigungselemente

Dübelgröße			M8	M10	M12	M16
Maximale Länge des Dübels (HST2 V3)	L	[mm]	230	230	245	245
Maximale Länge des Dübels (HST2-F V3)	L	[mm]	230	230	245	245
Maximale Länge des Dübels (HST2-R V3)	L	[mm]	260	280	295	350
Außendurchmesser der Unterlegscheibe	d _w ≥	[mm]	16	20	24	30
Außendurchmesser der großen	d _w ≥	[mm]	24	30	37	50

HST2 (-F) V3

HST2-R V3

Hilti-Verfüllset mit Injektionsmörtel Hilti HIT-HY...

Dübelgröße			М8	M10	M12	M16
Durchmesser	d _{vs}	[mm]	38	42	44	52
Höhe Verfüllscheibe	h _{vs}	[mm]	5	5	5	6
Höhe Verfüllscheibe und Winkelscheibe	h _{fs}	[mm]	8	9	10	11

Sealing washer

Spherical washer

Filling Set

h_{vs}

Statische und quasistatische Belastung basierend auf ETA-21/0480 Design gemäß EN 1992-4

Alle Daten in diesem Abschnitt basieren auf folgenden Grundlagen:

- Korrekte Installation (siehe Montageanweisungen)
- Für Einzelbefestigungen
- Beton C20/25
- Kein Einfluss von Achs- und Randabständen (siehe Tabelle mit charakteristischen Abständen)
- Charakteristische Achs- und Randabstände für Spaltversagen gelten nur für ungerissenen Beton.
- Für gerissenen Beton sind nur der charakteristische Achs- und Randabstand für den Betonausbruch entscheidend
- Einhaltung der Mindestbauteildicke (siehe Tabelle)
- Verankerungstiefe, wie in der Tabelle dieses Abschnitts angegeben
- Dübelwerkstoff, wie in den Tabellen dieses Abschnitts angegeben
- HST2-F V3 eignet sich für eine variable Lebensdauer von bis zu 50 Jahren. Für ungerissenen Beton siehe ETA-21/0510 für weitere Details. Für gerissenen Beton sind nur die technischen Daten von Hilti für die Korrosionskategorie C3, Lebensdauer 25 Jahre, verfügbar
- Empfohlene Lasten: Mit Gesamt-Teilsicherheitsfaktor für die Einwirkung γ = 1,4.

Hinweis: Verankerungstiefen h_{ef} < 40 mm gelten nur für die Befestigung redundanter nicht-struktureller Systeme gemäß EN 1992-4, Abschnitt 7.3 und CEN/TR 17079. Für andere Befestigungsarten erhöhen Sie bitte die Verankerungstiefe.

Für spezifische Bemessungsfälle siehe PROFIS Engineering

Bemessungswiderstand (mit Hammerbohrer gebohrte Löcher)

	20mocoungowaerotana (mit riammorsomor gosomto 20mor)														
Dübelg	ıröße				M8			M10		M12				M16	
Effektiv Verank	e erungstiefe	h _{ef}	[mm]	30 ¹⁾	45	70	40	60	80	50	70	100	65	85	120
Ungeri	Ungerissener Beton														
Zug	HST2 V3 HST2-F V3	_ N _{Rd}	[kN]	5,4	8,7	10,7	8,3	12,0	16,0	11,6	17,5	22,7	17,2	23,5	29,3
5	HST2-R V3		2 [KI4]	5,4	8,7	10,7	8,3	12,2	16,7	11,6	18,1	23,3	17,2	24,4	30,7
Quer	HST2 V3 HST2-F V3	_ V _{Rd}	[kN]	8,5	8,5	8,5	15,1	15,1	15,1	23,6	23,6	23,6	40,8	40,8	40,8
	HST2-R V3			12,6	12,6	12,6	20,2	20,2	20,2	29,4	29,4	29,4	48,5	50,9	50,9
Gerisse	ener Beton														
Zug	HST2 V3 HST2-F V3	_ N _{Rd}	[kN]	3,3	4,7	4,7	5,8	7,3	7,3	8,1	9,3	9,3	12,0	16,7	16,7
9	HST2-R V3		[]	3,3	3,3	3,3	5,8	6,0	6,0	8,0	8,0	8,0	12,0	16,7	16,7
Quer	HST2 V3 HST2-F V3	_ V _{Rd}	[kN]	8,5	8,5	8,5	14,8	15,1	15,1	20,9	23,6	23,6	33,9	40,8	40,8
_,	HST2-R V3		VRd [KIN]	8,8	12,6	12,6	14,8	20,2	20,2	20,9	29,4	29,4	33,9	50,7	50,9

Empfohlene Lasten (mit Hammerbohrer gebohrte Löcher)

Dübolo	Dübelgröße				M8			M10		M12			M16		
Dubeig	lioise				IVIO			IVI IU		141 12			14110		
Effektiv Verank	erungstiefe	h _{ef}	[mm]	30 ¹⁾	45	70	40	60	80	50	70	100	65	85	120
Ungerissener Beton															
Zug	HST2 V3 HST2-F V3	_ N _{rec}	[kN]	1)	6,2	7,6	5,9	8,6	11,4	8,3	12,5	16,2	12,3	16,8	21,0
3	HST2-R V3	100	[]	1)	6,2	7,6	5,9	8,7	11,9	8,3	12,9	16,7	12,3	17,4	21,9
Quer	HST2 V3 HST2-F V3	_ V _{rec}	[kN]	1)	6,1	6,1	10,8	10,8	10,8	16,9	16,9	16,9	29,1	29,1	29,1
	HST2-R V3	100	[]	1)	9,0	9,0	14,5	14,5	14,5	21,0	21,0	21,0	34,6	36,3	36,3
Geriss	ener Beton														
Zug	HST2 V3 HST2-F V3	_ N _{rec}	[kN]	1)	3,3	3,3	4,1	5,2	5,2	5,8	6,7	6,7	8,6	11,9	11,9
9	HST2-R V3	[]	1)	2,4	2,4	4,1	4,3	4,3	5,7	5,7	5,7	8,6	11,9	11,9	
Quer	HST2 V3 er HST2-F V3 V _{rec}	_ V _{rec}	[kN]	1)	6,1	6,1	10,6	10,8	10,8	14,9	16,9	16,9	24,2	29,1	29,1
HST2-R V3	100	[KIA]	1)	9,0	9,0	10,6	14,5	14,5	14,9	21,0	21,0	24,2	36,2	36,3	

Bemessungswiderstand (mit Diamantbohrer gebohrte Löcher)

Dübelgr	öße				M8			M10			M12			M16	
Effektive Veranke	rungstiefe	h _{ef}	[mm]	30 ¹⁾	45	70	40	60	80	50	70	100	65	85	120
Ungeris	Ungerissener Beton														
Zug	HST2 V3 HST2-F V3	_ N _{Rd}	[kN]	4,0	7,0	8,7	6,7	10,2	13,3	11,6	17,5	22,7	17,2	23,5	29,3
	HST2-R V3			4,0	6,9	8,0	6,7	9,8	13,3	9,3	14,1	18,7	13,3	19,3	24,0
Quer	HST2 V3 HST2-F V3	_ V _{Rd}	[kN]	8,5	8,5	8,5	15,1	15,1	15,1	23,6	23,6	23,6	40,8	40,8	40,8
	HST2-R V3			12,6	12,6	12,6	20,2	20,2	20,2	29,4	29,4	29,4	48,5	50,9	50,9
Gerisse	ner Beton														
Zug	HST2 V3 HST2-F V3	_ N _{Rd}	[kN]	3,3	4,7	4,7	4,7	6,0	6,0	6,7	8,0	8,0	9,3	13,3	13,3
	HST2-R V3			3,3	3,3	3,3	5,8	6,0	6,0	8,0	8,0	8,0	12,0	16,7	16,7
Quer	HST2 V3 HST2-F V3	_ V _{Rd}	[kN]	8,5	8,5	8,5	14,8	15,1	15,1	20,9	23,6	23,6	33,9	40,8	40,8
Quoi	HST2-R V3		Ka [KIN]	8,8	12,6	12,6	14,8	20,2	20,2	20,9	29,4	29,4	33,9	50,7	50,9

Empfohlene Lasten (mit Diamantbohrer gebohrte Löcher)

Dübelg	röße				M8			M10			M12			M16	
Effektive Veranke	e erungstiefe	h _{ef}	[mm]	30 ¹⁾	45	70	40	60	80	50	70	100	65	85	120
Ungeris	sener Beton														
Zug	HST2 V3 HST2-F V3	_ N _{rec}	[kN]	1)	5,0	6,2	4,8	7,3	9,5	8,3	12,5	16,2	12,3	16,8	21,0
	HST2-R V3	55		1)	4,9	5,7	4,8	7,0	9,5	6,7	10,1	13,3	9,5	13,8	17,1
Quer	HST2 V3 HST2-F V3	_ V _{rec}	[kN]	1)	6,1	6,1	10,8	10,8	10,8	16,9	16,9	16,9	29,1	29,1	29,1
	HST2-R V3	100	[]	1)	9,0	9,0	14,5	14,5	14,5	21,0	21,0	21,0	34,6	36,3	36,3
Gerisse	ener Beton														
Zug	HST2 V3 HST2-F V3	_ N _{rec}	[kN]	1)	3,3	3,3	3,3	4,3	4,3	4,8	5,7	5,7	6,7	9,5	9,5
9	HST2-R V3	,00	[]	1)	2,4	2,4	4,1	4,3	4,3	5,7	5,7	5,7	8,6	11,9	11,9
Quer	HST2 V3 HST2-F V3	_ V _{rec}	[kN]	1)	6,1	6,1	10,6	10,8	10,8	14,9	16,9	16,9	24,2	29,1	29,1
Quoi	HST2-R V3			1)	9,0	9,0	10,6	14,5	14,5	14,9	21,0	21,0	24,2	36,2	36,3

¹⁾ Siehe Abschnitt "Anforderungen an redundante Befestigung"

Anforderungen an redundante Befestigungen

Die Definition einer redundanten Befestigung gemäß den Mitgliedstaaten ist in EN 1992-4 und CEN/TR 17079 angegeben. Sofern keine nationale Definition vorliegt, können die folgenden Standardwerte verwendet werden.

angegeben. Sofern keine nationale D	angegeben. Sofern keine nationale Definition vorliegt, konnen die folgenden Standardwerte verwendet werden.										
Mindestanzahl an Befestigungspunkten	Mindestanzahl an Dübeln pro Befestigungspunkt	Maximale Bemessungslast der Einwirkung F _{sd} pro Befestigungspunkt									
3	1	2 kN									
4	1	3 kN									

Der Wert für die maximale Bemessungslast von Einwirkungen pro Befestigungspunkt F_{Sd} ist allgemein gültig, d. h. alle Befestigungspunkte werden bei der Bemessung des redundanten Systems berücksichtigt. F_{Sd} kann eine Zug-, Quer- oder Schräglast sein.

¹⁾ Siehe Abschnitt "Anforderungen an redundante Befestigung".

Seismische Widerstände basieren auf ETA-21/0480. Ausführung gemäß EN 1992-4

Alle Daten in diesem Abschnitt basieren auf folgenden Grundlagen:

- Korrekte Installation (siehe Montageanweisungen)
- Für Einzelbefestigungen
- Beton C20/25
- Mit Hammerbohrer gebohrte Löcher
- Kein Einfluss von Achs- und Randabständen (siehe Tabelle mit charakteristischen Abständen)
- Charakteristische Achs- und Randabstände für Spaltversagen gelten nur für ungerissenen Beton.
- Für gerissenen Beton sind nur der charakteristische Achs- und Randabstand für den Betonausbruch entscheidend
- Einhaltung der Mindestbauteildicke (siehe Tabelle)
- Verankerungstiefe, wie in der Tabelle dieses Abschnitts angegeben
- Dübelwerkstoff, wie in den Tabellen dieses Abschnitts angegeben
- $\alpha_{gap} = 1,0$ (mit Hilti-Verfüllset) und $\alpha_{gap} = 0,5$ (ohne Hilti-Verfüllset)

Spezifische Bemessungsfälle können Sie mit PROFIS Engineering berechnen.

Bemessungswiderstand bei seismischer Leistungskategorie Leistung C2

D.21 L	-			1440	N40	1440				
Dübelgröß	<u>e</u>			M10	M12	M16				
Effektive Verankerungstiefe		h _{ef}	[mm]	60	70	85				
mit und oh	mit und ohne Hilti-Verfüllset									
Zug	HST2 V3 HST2-F V3	NRd,C2	[kN]	3,7	9,3	12,0				
9	HST2-R V3		[····]	2,2	6,7	8,5				
mit Verfüll	set (α _{gap} =1,0)									
Quer	HST2 V3 HST2-F V3	VRd,C2	[kN]	5,9	8,9	20,0				
	HST2-R V3			9,6	14,4	30,0				
ohne Verfü	üllset (α _{gap} =0,5	5)								
Quer	HST2 V3 HST2-F V3	_ V _{Rd,C2}	[kN]	3,0	4,4	10,0				
Quoi	HST2-R V3	3,02	[[]	4,8	7,2	15,0				

Bemessungswiderstand bei seismischer Leistungskategorie C1

Dübelgrö	öße			M10	M12	M16					
	Effektive Verankerungstiefe		[mm]	60	70	85					
mit und	ohne Hilti-Verfü	llset									
Zug	HST2 V3 HST2-F V3	_ N _{Rd,C1}	[kN]	7,3	9,3	15,1					
9	HST2-R V3		[]	5,3	7,1	12,0					
mit Verfü	mit Verfüllset (α _{gap} =1,0)										
Quer	HST2 V3 HST2-F V3	_ V _{Rd,C1}	[kN]	9,5	17,1	31,8					
	HST2-R V3			10,9	18,5	30,0					
ohne Ve	rfüllset (α _{gap} =0,5	5)									
Quer	HST2 V3 HST2-F V3	_ V _{Rd,C1}	[kN]	4,8	8,6	15,9					
HST2-R V3	,	[1514]	5,4	9,2	15,0						

Feuerwiderstand basierend auf ETA-21/0480 Bemessung gemäß EN 1992-4

Alle Daten in diesem Abschnitt basieren auf folgenden Grundlagen:

- Korrekte Installation (siehe Montageanweisungen)
- Für Einzelbefestigungen
- Beton C20/25
- Kein Einfluss von Achs- und Randabständen (siehe Tabelle mit charakteristischen Abständen)
- Charakteristische Achs- und Randabstände für Spaltversagen gelten nur für ungerissenen Beton.
- Für gerissenen Beton sind nur der charakteristische Achs- und Randabstand für den Betonausbruch entscheidend
- Einhaltung der Mindestbauteildicke (siehe Tabelle)
- Verankerungstiefe, wie in der Tabelle dieses Abschnitts angegeben
- Dübelwerkstoff, wie in den Tabellen dieses Abschnitts angegeben
- Teilsicherheitsfaktor für Widerstand bei Brandexposition $\gamma_{-}(M, fi) = 1,0$

Hinweis: Verankerungstiefen h_{ef} < 40 mm gelten nur für die Befestigung redundanter nicht-struktureller Systeme gemäß EN 1992-4, Klausel 7.3 und CEN/TR 17079. Für andere Befestigungsarten erhöhen Sie bitte die Verankerungstiefe.

Spezifische Bemessungsfälle können Sie mit PROFIS Engineering berechnen.

Bemessungswiderstand im Brandfall (mit Hammerbohrer gebohrte Löcher)

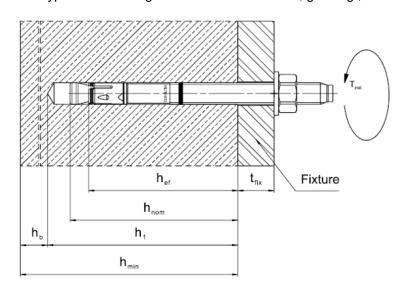
Dübelg	übelgröße ffektive				M8			M10			M12			M16	
Effektiv Verank	e erungstiefe	h _{ef}	[mm]	301)	45	70	40	60	80	50	70	100	65	85	120
Brandb	oeanspruchur	ng R30													
Zug	HST2 V3 HST2-F V3	N _{Rd.fi(30)}	[kN]	0,4	1,2	1,2	0,9	2,6	2,6	1,7	3,5	3,5	3,1	6,3	6,3
9	HST2-R V3		[]	0,4	0,9	0,9	0,9	2,3	2,3	1,7	3,0	3,0	3,1	6,3	6,3
Quer	HST2 V3 HST2-F V3	V _{Rd,fi(30)}	[kN]	0,4	1,2	1,2	0,9	2,6	2,6	1,7	4,8	4,8	3,1	9,0	9,0
	HST2-R V3			0,4	0,9	0,9	0,9	2,5	2,5	1,7	5,0	5,0	3,1	9,0	9,0
Brandb	oeanspruchur	ng R60													
Zug	HST2 V3 HST2-F V3	N _{Rd,fi(60)}	[kN]	0,3	1,0	1,0	0,8	2,1	2,1	1,3	3,5	3,5	2,4	6,3	6,3
	HST2-R V3	, (,		0,3	0,7	0,7	0,8	1,5	1,5	1,3	3,0	3,0	2,4	6,0	6,0
Quer	HST2 V3 HST2-F V3	V _{Rd,fi(60)}	[kN]	0,3	1,0	1,0	0,8	2,1	2,1	1,3	3,8	3,8	2,4	7,0	7,0
	HST2-R V3	, (,		0,3	0,7	0,7	0,8	1,5	1,5	1,3	3,5	3,5	2,4	6,0	6,0
Brandb	oeanspruchur	ng R90													
Zug	HST2 V3 HST2-F V3	N _{Rk,fi(90)}	[kN]	0,3	0,8	0,8	0,6	1,5	1,5	1,1	2,7	2,7	2,0	5,0	5,0
	HST2-R V3			0,3	0,6	0,6	0,6	1,0	1,0	1,1	2,0	2,0	2,0	3,5	3,5
Quer	HST2 V3 HST2-F V3	V _{Rk,fi(90)}	[kN]	0,3	0,8	0,8	0,6	1,5	1,5	1,1	2,7	2,7	2,0	5,0	5,0
	HST2-R V3			0,3	0,6	0,6	0,6	1,0	1,0	1,1	2,0	2,0	2,0	3,5	3,5
Brandb	oeanspruchur	ng R120													
Zug	HST2 V3 HST2-F V3	N _{Rd,fi(120)}	[kN]	0,2	0,6	0,6	0,5	1,2	1,2	0,8	2,1	2,1	1,6	4,0	4,0
	HST2-R V3			0,2	0,5	0,5	0,5	0,7	0,7	0,8	1,0	1,0	1,6	2,0	2,0
Quer	HST2 V3 HST2-F V3	V _{Rd,fi(120)}	[kN]	0,2	0,6	0,6	0,5	1,2	1,2	0,8	2,1	2,1	1,5	4,0	4,0
	HST2-R V3	,		0,2	0,5	0,5	0,5	0,7	0,7	0,8	1,0	1,0	1,6	2,0	2,0

¹⁾ Siehe Abschnitt "Anforderungen an redundante Befestigung"

Bemessungswiderstand im Brandfall (mit Diamantbohrer gebohrte Löcher)

Dübelg	übelgröße fektive				M8			M10			M12			M16	
Effektiv Verank	re erungstiefe	h _{ef}	[mm]	301)	45	70	40	60	80	50	70	100	65	85	120
Brandb	oeanspruchur	ng R30													
Zug	HST2 V3 HST2-F V3	_ N _{Rd,fi(30)}	[kN]	0,4	1,2	1,2	0,9	2,3	2,3	1,7	3,0	3,0	3,1	5,0	5,0
	HST2-R V3		[1]	0,4	0,9	0,9	0,9	2,3	2,3	1,7	3,0	3,0	3,1	6,3	6,3
Quer	HST2 V3 HST2-F V3	_ V _{Rd,fi(30)}	[kN]	0,4	1,2	1,2	0,9	2,6	2,6	1,7	4,8	4,8	3,1	9,0	9,0
	HST2-R V3			0,4	0,9	0,9	0,9	2,5	2,5	1,7	5,0	5,0	3,1	9,0	9,0
Brandb	peanspruchun	ng R60													
Zug	HST2 V3 HST2-F V3	N _{Rd,fi(60)}	[kN]	0,3	1,0	1,0	0,8	2,1	2,1	1,3	3,0	3,0	2,4	5,0	5,0
	HST2-R V3			0,3	0,7	0,7	0,8	1,5	1,5	1,3	3,0	3,0	2,4	6,0	6,0
Quer	HST2 V3 HST2-F V3	V _{Rd,fi(60)}	[kN]	0,3	1,0	1,0	0,8	2,1	2,1	1,3	3,8	3,8	2,4	7,0	7,0
	HST2-R V3			0,3	0,7	0,7	0,8	1,5	1,5	1,3	3,5	3,5	2,4	6,0	6,0
Brandb	oeanspruchun	ng R90													
Zug	HST2 V3 HST2-F V3	N _{Rk,fi(90)}	[kN]	0,3	0,8	0,8	0,6	1,5	1,5	1,1	2,7	2,7	2,0	5,0	5,0
	HST2-R V3			0,3	0,6	0,6	0,6	1,0	1,0	1,1	2,0	2,0	2,0	3,5	3,5
Quer	HST2 V3 HST2-F V3	V _{Rk,fi(90)}	[kN]	0,3	0,8	0,8	0,6	1,5	1,5	1,1	2,7	2,7	2,0	5,0	5,0
	HST2-R V3	, (==,		0,3	0,6	0,6	0,6	1,0	1,0	1,1	2,0	2,0	2,0	3,5	3,5
Brandb	oeanspruchun	ng R120													
Zug	HST2 V3 HST2-F V3	N _{Rd,fi(120)}	[kN]	0,2	0,6	0,6	0,5	1,2	1,2	0,8	2,1	2,1	1,6	4,0	4,0
	HST2-R V3			0,2	0,5	0,5	0,5	0,7	0,7	0,8	1,0	1,0	1,6	2,0	2,0
Quer	HST2 V3 HST2-F V3	V _{Rd,fi(120)}	[kN]	0,2	0,6	0,6	0,5	1,2	1,2	0,8	2,1	2,1	1,6	4,0	4,0
	HST2-R V3	,		0,2	0,5	0,5	0,5	0,7	0,7	0,8	1,0	1,0	1,6	2,0	2,0

¹⁾ Siehe Abschnitt "Anforderungen an redundante Befestigung"



Montagehinweise

Montagedetails HST2(-F) V3

Dübelgröße	, ,				M8			M10			M12			M16	
Nenndurchmess	er des	do	[mm]		8			10			12			16	
Bohrers Maximaler Durch	messer der														
Durchgangsbohr Anbauteils		d_{f}	[mm]		9			12			14			18	
Anzugsdrehmom (HST2 V3)	nent	T_{inst}	[Nm]		15			25			40			80	
Anzugsdrehmom F V3)	nent (HST2-	T_{inst}	[Nm]		25			40			50			110	
Effektive Verank	erungstiefe	h _{ef}	[mm]	30	45	70	40	60	80	50	70	100	65	85	120
Nominale Veranl	kerungstiefe	h _{nom}	[mm]	40	55	80	50	70	90	63	83	113	78	98	133
	Kerungstiele	I Inom	[iiiiii]	h	1 _{ef} + 1	0	r	ո _{ef} + 1	0	r	ո _{ef} + 1:	3	h	_{ef} + 13	3
Bohrlochtiefe															
	nicht gereinigt	$h_{1\text{min}}$	[mm]	60	75	100	70	90	110 h _{nom}	83 + 20	103	133	98	118	153
Hammerbohrer	goronngt			45	60	85	55	75	95	71	91	121	86	106	141
	gereinigt	$h_{1\text{min}} \\$	[mm]	40	00	h _{nom}		73	90	7 1	91	h _{nom}		100	141
				50	65	90	60	80	100	73	93	123	88	108	143
Diamantbohrer		h_{1min}	[mm]						h _{nom}	+ 10	,				
Mindestbetondic des Bohrlochs	ke unterhalb	h _{bmin}	[mm]		21			27			32			34	
Mindestdicke de	s Potons	h .	[mm]	m	ax(10	0;	m	ax(12	:0;	m	ax(14	0;	ma	ax (16	60;
willidestalcke des	s Delons	h _{min}	[111111]	1,5 I	h _{ef} ; h ₁	+h _b)	1,5	h _{ef} ; h ₁	+h _b)	1,5	h _{ef} ; h ₁	+h _b)	1,5 h	nef; h1	+h _b)
Dicke des Anba	uteils														
Dicke des Hilti-V		h_{fs}	[mm]		8			9			10			11	
Effektive Befestion mit Hilti-Verfüllse		$t_{fix,ef}$	[mm]						t _{fix} –	- h _{fs}					
Charakteristisc	he Abstände H	1ST2(-F)	V 3												
Abstand für Spal	tversagen	S _{cr,sp}	[mm]	152	191	210	194	291	386	181	284	340	210	337	409
und Betonausbrเ	uch ^{a)}	S _{cr,N}	[mm]	90	135	210	120	180	240	150	210	300	195	255	360
Randabstand für		C _{cr,sp}	[mm]	76	96	105	97	146	193	91	142	170	105	168	204
sagen und Betor	nausbruch ^{a)}	Ccr,N	[mm]	45	68	105	60	90	120	75	105	150	98	128	180

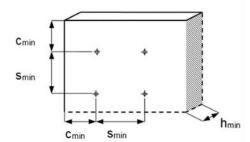
^{a)} Werte berechnet unter der Hypothese von ungerissenem Beton C20/25, gereinigt, hammergebohrte Bohrung.

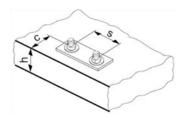
Montagehinweise

Montagedetails HST2-R V3

Montagedetans															
Dübelgröße									M16						
Nenndurchmess des Bohrers	er	do	[mm]		8			10			12			16	
Maximaler Durch der Durchgangs des Anbauteils		d _f	[mm]		9			12			14			18	
Anzugsdrehmon	nent	T _{inst}	[Nm]		20			45			60			110	
Effektive Verank	erungstiefe	h _{ef}	[mm]	30	45	70	40	60	80	50	70	100	65	85	120
Nominale Veran	kerungstiefe	h_{nom}	[mm]	38	53 h _{ef} + 8	78 }	49	69 h _{ef} + 9	89	60 h	80 1 _{ef} + 1	110 0	78 h	98 _{ef} + 13	133 3
Bohrlochtiefe										ı			ı		
	nicht	h _{1min}	[mm]	58 73 98 69 89 109 80 100					130	130 98 118 153					
Hammerbohrer	gereinigt	••••••	[]	h _{nom}				+ 20							
	gereinigt	h _{1min}	[mm]	43	58	83	54	74	94	68	88	118	86	106	141
	gereinigt	TTTMIN	נווווון			h _{nom}	+ 5					h _{nom}	+ 8		
Diamantbohrer		h _{1min}	[mm]	48	63	88	59	79	99 h _{nom}	70	90	120	88	102	143
M. I. d. L.	I II.								I Inom	+ 10			1		
Mindestbetondic der Bohrlochsoh		h_{bmin}	[mm]		21			27			32			34	
Mindestdicke de	s Betons	h_{min}	[mm]		ax(10 h _{ef} ; h ₁			ax(12 h _{ef} ; h ₁			ax(14 h _{ef} ; h ₁			ax(16 n _{ef} ; h ₁ ·	
Dicke des Anba	auteils														
Dicke des Hilti-V	erfüllsets/	h _{fs}	[mm]		8			9			10			11	
Effektive Befesti mit Hilti-Verfüllse		$t_{fix,ef}$	[mm]						t _{fix} –	- h _{fs}					
Charakteristisc	he Abstände l	IST2-R V	3												
Abstand für Spa		S _{cr,sp}	[mm]	142	248	299	161	241	319	204	292	343	327	432	475
und Betonausbr	uch ^{a)}	$\mathbf{S}_{\text{cr},N}$	[mm]	90	135	210	120	180	240	150	210	300	195	255	360
Randabstand für		C _{cr,sp}	[mm]	nm] 71 124 150 80 120 159 102 146 171 163 216 2					238						
Spaltversagen u Betonausbruch		Ccr,N	[mm]	45	- 				120	75	105	150	98	128	180

^{a)} Werte berechnet unter der Hypothese von ungerissenem Beton C20/25, gereinigt, hammergebohrte Bohrung.


HST2 (-F) V3


Mindestachsabstand s_{min}, Mindestrandabstand c_{min} und erforderliche Spaltfläche A_{sp,req}

Wir empfehlen, Ihre Bemessungen mit der PROFIS Engineering Software von Hilti zu überprüfen, um die Rand- und Achsabstände zu verifizieren

ETA-21/0480 enthält Formeln für die Berechnung der flexiblen Rand- und Achsabstände für die verschiedenen Dübelanordnungen in Abhängigkeit von der Dicke des Untergrundes.

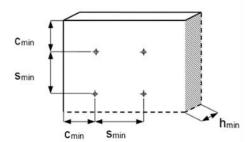
Die Mindestachs- und Randabstände in den nachstehenden Tabellen sind Empfehlungen für bestimmte Dübelanordnungen und Abmessungen des Untergrundes.

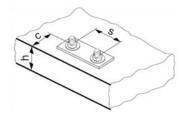
Dübelgröße HST2(-F) V3					N	18		
Effektive Verankerungstiefe	h _{ef}	[mm]	3	0	4	5	7	0
Bohrloch gereinigt			ja	nein	ja	nein	ja	nein
Mindestbauteildicke	h _{min}	[mm]	100	100	100	100	110	125
Ungerissener Beton								
Mindestachsabstand	S _{min}	[mm]	40	40	40	40	40	40
Militidestaciisabstariu	für c _{min}	[mm]	55	55	55	55	50	45
Mindestrandabstand	C _{min}	[mm]	45	45	45	45	45	45
Milidestraridabstarid	für s _{min}	[mm]	65	65	60	60	50	40
Gerissener Beton								
Mindestachsabstand	Smin	[mm]	40	40	40	40	40	40
Mindestachsabstand	für c _{min}	[mm]	50	50	45	45	45	45
Mindostrondobatand	C _{min}	[mm]	45	45	45	45	45	45
Mindestrandabstand	für s _{min}	[mm]	40	40	40	40	40	40

Dübelgröße HST2(-F) V3					M	10		
Effektive Verankerungstiefe	h _{ef}	[mm]	4	0	6	0	8	0
Bohrloch gereinigt			ja	nein	ja	nein	ja	nein
Mindestbauteildicke	h_{min}	[mm]	120	120	120	120	125	140
Ungerissener Beton								
Mindestachsabstand	Smin	[mm]	55	55	55	55	55	55
Militidestacrisabstariu	für c _{min}	[mm]	75	75	75	75	70	60
Mindestrandabstand	Cmin	[mm]	55	55	55	55	55	55
Mindestrandabstand	für s _{min}	[mm]	105	105	105	105	95	65
Gerissener Beton								
Mindestachsabstand	S _{min}	[mm]	55	55	55	55	55	55
Milituestacrisabstariu	für c _{min}	[mm]	55	55	55	55	55	55
Mindestrandabstand	Cmin	[mm]	55	55	55	55	55	55
wiiiuestranuapstanu	für s _{min}	[mm]	55	55	55	55	55	55

Dübelgröße HST2(-F) V3					M	12		
Effektive Verankerungstiefe	h _{ef}	[mm]	5	0	7	0	10	00
Bohrloch gereinigt			ja	nein	ja	nein	ja	nein
Mindestbauteildicke	h_{min}	[mm]	140	140	140	140	155	165
Ungerissener Beton								
Mindestachsabstand	Smin	[mm]	60	60	60	60	60	60
Milluestaciisabstariu	für c _{min}	[mm]	75	75	75	75	65	65
Mindestrandabstand	Cmin	[mm]	55	55	55	55	55	55
Milidestraridabstarid	für s _{min}	[mm]	125	125	110	110	115	95
Gerissener Beton								
Mindestachsabstand	Smin	[mm]	60	60	60	60	60	60
Williuestachsabstatiu	für c _{min}	[mm]	60	60	55	55	60	55
Mindestrandabstand	Cmin	[mm]	55	55	55	55	55	55
wiiiuestiaiiuabstaiiu	für s _{min}	[mm]	70	70	60	60	60	60

Dübelgröße HST2(-F) V3					M	16		
Effektive Verankerungstiefe	h _{ef}	[mm]	6	5	8	5	12	20
Bohrloch gereinigt			ja	nein	ja	nein	ja	nein
Mindestbauteildicke	h_{min}	[mm]	160	160	160	160	180	190
Ungerissener Beton								
Mindestachsabstand	Smin	[mm]	70	70	70	70	70	70
Milituestacrisabstariu	für c _{min}	[mm]	85	85	85	85	75	75
Mindestrandabstand	Cmin	[mm]	70	70	70	70	70	70
Mindestrandabstand	für s _{min}	[mm]	105	105	105	105	95	80
Gerissener Beton								
Mindestachsabstand	Smin	[mm]	70	70	70	70	70	70
Mindestachsabstand	für c _{min}	[mm]	70	70	70	70	70	70
Mindestrandabstand	Cmin	[mm]	70	70	70	70	70	70
wiiiuestianuabstanu	für s _{min}	[mm]	70	70	70	70	70	70


HST2-R V3


Mindestachsabstand s_{min}, Mindestrandabstand c_{min} und erforderliche Spaltfläche A_{sp,req}

Wir empfehlen, Ihre Bemessungen mit der PROFIS Engineering Software von Hilti zu überprüfen, um die Rand- und Achsabstände zu verifizieren

ETA-21/0480 enthält Formeln für die Berechnung der flexiblen Rand- und Achsabstände für die verschiedenen Dübelanordnungen in Abhängigkeit von der Dicke des Untergrundes.

Die Mindestachs- und Randabstände in den nachstehenden Tabellen sind Empfehlungen für bestimmte Dübelanordnungen und Abmessungen des Untergrundes.

Dübelgröße HST2-R V3					N	18		
Effektive Verankerungstiefe	h _{ef}	[mm]	3	0	4	5	7	0
Bohrloch gereinigt			ja	nein	ja	nein	ja	nein
Mindestbauteildicke	h _{min}	[mm]	100	100	100	100	105	120
Ungerissener Beton								
Mindestachsabstand	S _{min}	[mm]	40	40	40	40	40	40
Milituestacrisabstariu	für c _{min}	[mm]	60	60	60	60	60	50
Mindestrandabstand	C _{min}	[mm]	45	45	45	45	45	45
Milidestraridabstarid	für s _{min}	[mm]	90	90	85	85	80	50
Gerissener Beton								
Mindestachsabstand	Smin	[mm]	40	40	40	40	40	40
Mindestachsabstand	für c _{min}	[mm]	50	50	50	50	50	45
Mindestrandabstand	C _{min}	[mm]	45	45	45	45	45	45
windestrandapstand	für s _{min}	[mm]	50	50	45	45	45	40

Dübelgröße HST2-R V3					M	10		
Effektive Verankerungstiefe	h _{ef}	[mm]	4	0	6	0	8	0
Bohrloch gereinigt			ja	nein	ja	nein	ja	nein
Mindestbauteildicke	h_{min}	[mm]	120	120	120	120	125	140
Ungerissener Beton								
Mindestachsabstand	Smin	[mm]	55	55	55	55	55	55
Militidestactisabstatid	für c _{min}	[mm]	70	70	70	70	70	60
Mindestrandabstand	Cmin	[mm]	50	50	50	50	50	50
Mindestrandabstand	für s _{min}	[mm]	130	130	115	115	115	90
Gerissener Beton								
Mindestachsabstand	S _{min}	[mm]	55	55	55	55	55	55
Militidestactisabstatid	für c _{min}	[mm]	65	65	65	65	60	55
Mindestrandabstand	Cmin	[mm]	50	50	50	50	50	50
wiiiuestianuaustanu	für s _{min}	[mm]	100	100	90	90	90	65

Dübelgröße HST2-R V3					М	12		
Effektive Verankerungstiefe	h _{ef}	[mm]	5	0	7	0	10	00
Bohrloch gereinigt			ja	nein	ja	nein	ja	nein
Mindestbauteildicke	h _{min}	[mm]	140	140	140	140	150	165
Ungerissener Beton								
Mindestachsabstand	Smin	[mm]	60	60	60	60	60	60
Willidestachsabstand	für c _{min}	[mm]	80	80	80	80	75	70
Mindestrandabstand	Cmin	[mm]	55	55	55	55	55	55
Mindestrandabstand	für s _{min}	[mm]	155	155	135	135	155	120
Gerissener Beton								
Mindestachsabstand	Smin	[mm]	60	60	60	60	60	60
Willidestachsabstand	für c _{min}	[mm]	70	70	70	70	65	60
Mindestrandabstand	Cmin	[mm]	55	55	55	55	55	55
INITIOESTIATIOADSTATIO	für s _{min}	[mm]	110	110	95	95	110	85

Dübelgröße HST2-R V3					M	16		
Effektive Verankerungstiefe	h _{ef}	[mm]	6	5	8	5	12	20
Bohrloch gereinigt			ja	nein	ja	nein	ja	nein
Mindestbauteildicke	h_{min}	[mm]	160	160	160	160	180	190
Ungerissener Beton								
Mindestachsabstand	Smin	[mm]	70	70	70	70	70	70
Militidestactisabstatid	für c _{min}	[mm]	100	100	100	100	85	80
Mindestrandabstand	Cmin	[mm]	60	60	60	60	60	60
Mindestrandabstand	für s _{min}	[mm]	200	200	185	185	210	185
Gerissener Beton								
Mindestachsabstand	Smin	[mm]	70	70	70	70	70	70
Mindestachsabstand	für c _{min}	[mm]	80	80	80	80	75	70
Mindestrandabstand	Cmin	[mm]	60	60	60	60	60	60
wiiiuestiaiiuabstaiiu	für s _{min}	[mm]	135	135	125	125	145	125

Montagewerkzeuge

Detaillierte Informationen zur Montage finden Sie in der Gebrauchsanweisung (IFU), die dem Produkt beiliegt.

Bohrhammer (Kabelgebunden und Kabellos)		TE 2 - TE 70
Kernbohrgeräte		DD EC-1, DD 30-W, DD 150-U
Sonstige Geräte	HILDY I	Schlagschrauber mit AT-Drehmomentmodul - SIW 6AT-22 und SI-AT-22 - SIW 4AT-22 und SI-AT-22
		Hammerbohrer TE-CX, TE-YX, TE-C, TE-Y
	НІЦТІ 💮	Diamantbohrkrone TS, TL, SPX-T, SPX-L
		Setzwerkzeug HS-SC
		Ausblaspumpe